首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While air sampling techniques using adsorbent-based collection, thermal desorption and chromatographic analysis have found a niche in ambient air sampling, occupational applications have been more limited. This paper evaluates the use of thermal desorption techniques for low flow active and passive sampling configurations which allow conveniently long duration sampling in occupational settings and other high concentration environments. The use of an orifice enables flows as low as 0.5 ml min(-1) and sampling periods up to several days without significant biases. A model is used to predict sampling rates of a passive sampler encompassing an orifice, a void space, glass wool, and the adsorbent. Laboratory and field tests conducted at a commercial offset printing facility, which contained a variety of volatile organic compounds (primarily aromatic but also a few chlorinated and terpene compounds at levels from 1 to 67,000 microg m(-3)), are used to evaluate the approach. Tenax GR and Carbosieve SIII, both singly and together, were employed as adsorbents. Side-by-side tests comparing high flow, low flow and passive samplers show excellent agreement and high linearity (r = 0.95) for concentrations spanning nearly five orders of magnitude. Active samplers were tested at flows as low as 0.5 ml min(-1), compared to typical flows up to 40 ml min(-1). Passive samplers demonstrated a linear range and agreement with predictions for adsorbate loadings from approximately 1 ng to nearly 10 microg. Using a chemical mass balance receptor model, concentrations in the facility were apportioned to solvents, inks and other indoor and outdoor sources. Overall, the use of low flow active and passive sampling approaches employing thermal desorption techniques provides good performance and tremendous flexibility that facilitates use in many applications, including workplace settings.  相似文献   

2.
While polyurethane foam (PUF) disk passive air samplers are employed increasingly to monitor persistent organic pollutants in indoor air, they essentially sample only the vapour phase. As a previous investigation of the vapour : particle phase partitioning of hexabromocyclododecanes HBCDs in (outdoor) air reported them to be present largely in the particulate phase, we monitored three offices using active air samplers. In each, approximately 65% of HBCDs were present in the vapour phase, suggesting PUF disk passive samplers are suitable for monitoring HBCDs in indoor air. Concentrations in the three offices (239-359 pg Sigma HBCD m(-3)) exceed substantially those reported in outdoor air from the United States (2.1-11 pg Sigma HBCD m(-3)), but are in line with outdoor air from Stockholm. The relative abundance of the three principal diastereomers in office air was closer to that found in technical HBCD formulations (i.e. predominantly gamma-HBCD) than in most US outdoor air samples. Time integrated air concentrations of alpha-, beta-, and gamma-HBCD were obtained for an office using a low volume sampler operated over a 50 d period alongside PUF disk samplers. This calibration exercise yielded the following passive air sampling rates for both a fully- and part-sheltered PUF disk sampler design: for alpha-, beta-, and gamma-HBCD, 0.87, 0.89, and 0.91 m3 d(-1) respectively (fully-sheltered) and 1.38, 1.54, and 1.55 m3 d(-1) respectively (part-sheltered). Deployment of the part-sheltered configuration yielded concentrations approximately 35% lower than those obtained using a high volume sampler, consistent with PUF disk samplers measuring primarily the vapour phase.  相似文献   

3.
The development of convenient and competitive devices and methods for monitoring of organic pollutants in the aquatic environment is of increasing interest. An integrative passive sampling system has been developed which consists of a solid poly(dimethylsiloxane) (PDMS) material (tube or rod), acting as hydrophobic organic receiving phase, enclosed in a water-filled or an air-filled low-density polyethylene (LDPE) membrane tubing. These samplers enable the direct analysis of the pollutants accumulated during exposure in the receiving phase by thermodesorption-GC/MS, avoiding expensive sample preparation and cleanups. The capabilities of these sampling devices were studied for the sampling of 20 persistent organic pollutants (chlorobenzenes, hexachlorocyclohexanes, p,p'-DDE, PAHs, and PCBs) in laboratory exposure experiments. For the three sampler designs investigated the uptake of all target analytes was integrative over exposure periods up to 9 days (except PCB 101). The determined sampling rates range from 4 to 1340 microl h(-1) for the water-filled samplers and from 20 to 6360 microl h(-1) for the air-filled ones, respectively. The sampling rate of the analytes is dependent on their molecular weight, partition between water and sampler media (PDMS, polyethylene, water, air) and also of the sampler design. The passive samplers enable the estimation of time-weighted average (TWA) concentration of water pollutants in the lower ng l(-1) to pg l(-1) range.  相似文献   

4.
Two types of passive sampler were developed for the long-term monitoring of semivolatile organic compounds (SOCs) in air. They consist of poly(dimethylsiloxane) (PDMS)-coated stir bars (type A) or silicone tubing (type B), acting as a solid receiving medium, enclosed in a heat-sealed low-density polyethylene (LDPE) membrane. These samplers combine the advantages of integrative passive sampling with those of analysing accumulated analytes by thermodesorption-GC-MS, whilst avoiding the use of solvents and expensive sample preparation and cleanup steps. The performance of these samplers was investigated for the integrative sampling of SOCs, including alpha- and gamma-hexachlorocyclohexanes, hexachlorobenzene, 2,4,4'-trichlorobiphenyl, 2,2',5,5'-tetrachlorobiphenyl and fluoranthene, in laboratory exposure experiments under controlled conditions. For both types of sampler, the uptake of all the analytes investigated was linear over an exposure period of 15 days. The sampling rates calculated ranged from 70 to 320 ml h(-1) (sampler A) and 630 to 4300 ml h(-1) (sampler B). The passive samplers are able to detect low time-weighted average air concentrations in the pg m(-3) range. The small, robust and inexpensive sampling devices were tested successfully for the long-term air monitoring of semivolatile organic pollutants in a polluted area over an exposure period of up to 28 days.  相似文献   

5.
Continuous, intermittent and passive sampling of airborne VOCs   总被引:1,自引:0,他引:1  
Long sampling periods are often advantageous or required for measuring air quality and characterizing exposures. However, sampling periods exceeding 8 to 24 h using thermally desorbable adsorbent tube (TDT) samplers for the measurement of airborne volatile organic compounds (VOCs) face several challenges, including maintaining stable and low flow rates, and avoiding breakthrough of the adsorbent. These problems may be avoided using intermittent sampling; however, the literature contains few if any reports that have evaluated this technique in environmental, occupational or other applications. The purpose of this study is to evaluate continuous, intermittent and passive sampling methods using both laboratory and real-world tests. Laboratory tests compared continuous and intermittent (active) samplers in a controlled dynamic test gas generation system. Field tests used side-by-side active and passive samplers in an office, home workshop and four smokers' homes. All samples were analyzed for a wide range of VOCs by GC-MS. In most instances, intermittent sampling yielded better reproducibility (duplicate precision of 10 +/- 6%) than continuous low-flow sampling (18 +/- 5%), in part due to difficulty maintaining low flows. Concentrations obtained using intermittent sampling agreed with those for continuous sampling, with downward biases resulting primarily from errors in flow rate measurements. In the field, more VOC species were detected using active rather than passive sampling. Passive measurements were 12% lower than continuous measurements, a difference attributed to declining uptake rates at higher concentrations over the 3 to 4 d sampling period. Overall, most measurements obtained using the three sampling methods agreed within 20% for a wide range of concentrations (0.1 to 230 microg m(-3)). Both passive and intermittent sampling approaches are suitable for long sampling periods, but intermittent sampling provides greater flexibility with respect to sampling period, and permits the use of multi-bed adsorbents that can capture a wider range of VOCs.  相似文献   

6.
Mercury vapour adsorption tubes manufactured for pumped sampling and analysis have been evaluated for their performance as passive samplers. This has been done by exposing these tubes in a novel micro-exposure chamber. The uptake rates of these tubes have been found to be low (approximately 0.215 ml min(-1)) as compared to bespoke passive samplers for mercury vapour (typically in excess of 50 ml min(-1)). The measured uptake rates were shown to vary significantly between tubes and this was attributed to the variability in the air-sorbent interface and the proportion of the cross sectional area removed by the crimp in the quartz tubes used to secure the sorbent material. As a result of this variability the uptake rate of each tube must be determined using the micro-exposure chamber prior to deployment. Results have shown that the uptake rate determined in the micro-exposure chamber is invariant of concentration, and therefore these uptakes rates may be determined at a high mercury vapour concentration for many tubes at once in less than one hour. The uptake rate of the adsorption tubes under these conditions may be determined with a precision of 5%. Measurements made on a limited field trial in indoor and outdoor ambient air have shown that these tubes give results in acceptable agreement with more traditional pumped sampling methods, although longer sampling periods are required in order to reduce the uncertainty of the measurement, which is currently approximately 30%.  相似文献   

7.
There is an increasing need to monitor concentrations of polar organic contaminants in the aquatic environment. Integrative passive samplers can be used to assess time weighted average aqueous concentrations, provided calibration data are available and sampling rates are known. The sampling rate depends on environmental factors, such as temperature and water flow rate. Here we introduce an apparatus to investigate the sampling properties of passive samplers using river-like flow conditions and ambient environmental matrices: river water and treated sewage effluent. As a model sampler we selected Empore SDB-RPS disks in a Chemcatcher housing. The disks were exposed for 1 to 8 days at flow rates between 0.03 and 0.4 m s(-1). Samples were analysed using a bioassay for estrogenic activity and by LC-MS-MS target analysis of the pharmaceuticals sulfamethoxazole, carbamazepine and clarithromycin. In order to assess sampling rates of SDB disks, we also measured aqueous concentrations of the pharmaceuticals. Sampling rates increased with increasing flow rate and this relationship was not affected by the environmental matrix. However, SDB disks were only sampling in the integrative mode at low flow rates <0.1 m s(-1) and/or for short sampling times. The duration of linear uptake was particularly short for sulfamethoxazole (1 day) and longer for clarithromycin (5 days). At 0.03 m s(-1) and 12-14 degrees C, the sampling rate of SDB disks was 0.09 L day(-1) for clarithromycin, 0.14 L day(-1) for sulfamethoxazole and 0.25 L day(-1) for carbamazepine. The results show that under controlled conditions, SDB disks can be effectively used as passive sampling devices.  相似文献   

8.
Low flow active sampling techniques collecting vapors and gases using thermally desorbable adsorbents are now feasible and desirable in many applications as they permit long integration times, the potential for miniaturized sampling configurations, and other advantages. At very low air flow rates (< 1 ml min(-1)), diffusive uptake on adsorbents in conventional sorbent tubes may equal or exceed the active (pumped) uptake rate, and even at low flow rates (1-4 ml min(-1)), diffusive uptake may significantly bias measurements. Thus, corrections to account for the diffusive flux or means to limit the diffusive uptake are needed in low flow applications. This paper presents (1) a theoretical analysis of the role of diffusive and advective uptake for several sampling geometries of tube-type samplers; (2) experimental confirmation using both laboratory and field studies; (3) estimates of the tortuosity and porosity of the glass wool packing used to retain the adsorbent, parameters needed to estimate diffusive fluxes in passive and active sampling; (4) a demonstration that orifice-equipped low flow active samplers can reduce diffusive uptake and improve precision, and (5) a model predicting the saturated adsorbent layer that helps to account for the gradual decline in uptake rates seen in passive sampling. Diffusive uptake will depend on the tube configuration and diffusion coefficient of the substance of interest, but for conventional sampling tubes (0.4-0.5 cm id, 1.5 cm air gap), sample flow rates should be maintained above 1 to 4 ml min(-1) to keep errors below 5%. Laboratory experiments showed close agreement with theoretical calculations, and the field study using 1 to 4 d sampling periods and 0.3 ml min(-1) flows demonstrated that the orifice-equipped samplers essentially eliminated diffusive uptake. No significant practical difficulties are encountered using orifices, e.g., pressure drop is minimal. Experimental estimates of tortuosity (0.79 +/- 0.02) and porosity (0.92 +/- 0.10) of the glass wool packing (0.3 cm length) represent relatively little resistance to diffusion; however, variation in the packing and adsorbent placement can degrade the precision achievable by passive samplers. Diffusion barriers, consisting most simply of an orifice, may be used to lower the diffusive uptake. A needle-type orifice permits flows below 0.1 ml min(-1) and is suitable for sampling periods as long as several weeks, and it provided greater precision than conventional open-ended sampling tubes (8% compared to 13%). Finally, the gradual decrease in diffusive fluxes often seen in passive sampling is attributed to additional resistance posed by a saturated adsorbent layer, in agreement with a simple model based on total VOCs and specific adsorptivity of the adsorbent.  相似文献   

9.
The performance of an integrative passive sampler that consists of a C18 Empore disk sorbent receiving phase fitted with low density polyethylene membrane was optimised for the measurement of time-weighted average concentrations of hydrophobic micropollutants in water. A substantial improvement of sampling characteristics including the rate of sampling and the sampling precision was achieved by decreasing the internal sampler resistance to mass transfer of hydrophobic organic chemicals. This was achieved by adding a small volume of n-octanol, a solvent with high permeability (solubility [times] diffusivity) for target analytes, to the interstial space between the receiving sorbent phase and the polyethylene diffusion-limiting membrane.  相似文献   

10.
A novel passive water sampler for in situ sampling of antibiotics   总被引:1,自引:0,他引:1  
Passive water sampling has several advantages over active methods; it provides time-integrated data, can save on time and cost compared to active methods, and yield high spatial resolution data through co-deployment of simple, cheap units. However, one problem with many sampler designs in current use is that their uptake rates for trace substances of interest are flow-rate dependent, thereby requiring calibration data and other information to enable water concentrations to be derived from the mass per sampler. However, the 'family' of samplers employing the principle of diffusive gradients in thin films (DGT) provides an in situ means of quantitatively measuring labile species in aquatic systems without field calibration. So far, this technique has only been tested and applied in inorganic substances: metals, radionuclides, nutrients, etc. Design and applications of DGT to trace organic contaminants ('o-DGT') would be of widespread interest. This study describes the laboratory testing and performance characteristics of o-DGT, with the antibiotic sulfamethoxazole (SMX) as a model compound and XAD18 as the novel binding agent. o-DGT uptake of SMX increased with time and decreased with diffusion layer thickness, confirming the principle for SMX. XAD18 showed sufficiently high capacity for SMX for routine field applications. o-DGT measurement of SMX was independent of pH (6-9) and ionic strength (0.001-0.1 M) and not affected by flow rate once above static conditions. The diffusion coefficient of SMX in the sampler was measured using an independent diffusion cell and information is presented to allow temperature correction and derivation of aqueous concentrations from deployed samplers. The potential use of o-DGT for in situ measurement of pharmaceutical antibiotics is confirmed by this study and applications are briefly discussed.  相似文献   

11.
利用自制被动采样装置,在2011年秋冬季对南京市部分地区室内空气中5种气态多环芳烃(PAHs)(萘、苊烯、苊、芴、菲)进行了为期100d的连续采样检测,被动采样器的采样速率为0.012m3/d,5种PAHs的回收率在63%~105%之间,方法检出限在1.1~2.4ng范围内。结果表明,南京市5处不同室内环境空气中萘的浓度最高,占总量的90%以上。室内环境空气中5种PAHs的总浓度为230~1564ng/m3。住宅内人体对5种PAHs的暴露速率为479~560ng/h。  相似文献   

12.
Air exchange rates and interzonal flows are critical ventilation parameters that affect thermal comfort, air migration, and contaminant exposure in buildings and other environments. This paper presents the development of an updated approach to measure these parameters using perfluorocarbon tracer (PFT) gases, the constant injection rate method, and adsorbent-based sampling of PFT concentrations. The design of miniature PFT sources using hexafluorotoluene and octafluorobenzene tracers, and the development and validation of an analytical GC/MS method for these tracers are described. We show that simultaneous deployment of sources and passive samplers, which is logistically advantageous, will not cause significant errors over multiday measurement periods in building, or over shorter periods in rapidly ventilated spaces like vehicle cabins. Measurement of the tracers over periods of hours to a week may be accomplished using active or passive samplers, and low method detection limits (<0.025 microg m(-3)) and high precisions (<10%) are easily achieved. The method obtains the effective air exchange rate (AER), which is relevant to characterizing long-term exposures, especially when ventilation rates are time-varying. In addition to measuring the PFT tracers, concentrations of other volatile organic compounds (VOCs) are simultaneously determined. Pilot tests in three environments (residence, garage, and vehicle cabin) demonstrate the utility of the method. The 4 day effective AER in the house was 0.20 h(-1), the 4 day AER in the attached garage was 0.80 h(-1), and 16% of the ventilation in the house migrated from the garage. The 5 h AER in a vehicle traveling at 100 km h(-1) under a low-to-medium vent condition was 92 h(-1), and this represents the highest speed test found in the literature. The method is attractive in that it simultaneously determines AERs, interzonal flows, and VOC concentrations over long and representative test periods. These measurements are practical, cost-effective, and helpful in indoor air quality and other investigations.  相似文献   

13.
This study describes the field evaluation of a tailor-made new glass passive sampler developed for the determination of NO(2), based on the collection on triethanolemine (TEA)-coated fibre filter paper. The sampler has been derived from a Palmes design. The overall uncertainty of the sampler was determined by using Griess-Saltzman ASTM D 1607 standard test method as a reference method. The agreement between the results of the passive sampler and the reference method was +/-7.90% with the correlation coefficient of 0.90. Method precision in terms of coefficient of variance (CV) for three simultaneously applied passive samplers was 8.80%. The uptake rate of NO(2) was found to be 2.49 ml/min in a very good agreement with the value calculated from theory (2.63 ml/min). Sampler detection limit was 1.99 microg/m(3) for an exposure period of 1 week and the sampler can be stored safely for a period of up to 6 weeks before exposure. A comparison of the sampler performance was conducted against a commercially available diffusion tube (Gradko diffusion tube). The results from the applied statistical paired t test indicated that there was no significant difference between the performances of two passive samplers (R (2) > 0.90). Also, another statistical comparison was carried out between the dark and transparent glass passive samplers. The results from the dark-colour sampler were higher than that from the transparent sampler (approximately 25%) during the summer season because of the possible photodegradation of NO(2)-TEA complex.  相似文献   

14.
A new, passive particle deposition air sampler, called the Einstein-Lioy Deposition Sampler (ELDS), has been developed to fill a gap in passive sampling for near-field particle emissions. The sampler can be configured in several ways: with a protective hood for outdoor sampling, without a protective hood, and as a dust plate. In addition, there is an XRF-ready option that allows for direct sampling onto a filter-mounted XRF cartridge which can be used in conjunction with all configurations. A wind tunnel was designed and constructed to test the performance of different sampler configurations using a test dust with a known particle size distribution. The sampler configurations were also tested versus each other to evaluate whether or not the protective hood would affect the collected particle size distribution. A field study was conducted to test the sampler under actual environmental conditions and to evaluate its ability to collect samples for chemical analysis. Individual experiments for each configuration demonstrated precision of the sampler. The field experiment demonstrated the ability of the sampler to both collect mass and allow for the measurement of an environmental contaminant i.e. Cr(6+). The ELDS was demonstrated to be statistically not different for Hooded and Non-Hooded models, compared to each other and the test dust; thus, it can be used indoors and outdoors in a variety of configurations to suit the user's needs.  相似文献   

15.
Two field studies were conducted for one year using sorbent-impregnated polyurethane foam (SIP) disks for PCB and PBDE air sampling. SIP disks were introduced by Shoeib et al. (2008) as an alternative passive air sampling medium to the polyurethane foam (PUF) disk and have the advantage of a higher holding capacity for organic chemicals. The first study on SIP disks confirmed their application for measuring volatile perfluorinated compounds (PFCs) and their ability to maintain time-integrated (linear) air sampling. In this study, the suitability of the SIP disks for long-term sampling of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and hexachlorobenzene (HCB) was assessed. SIP disks were deployed at a rural site in the UK and harvested after periods ranging from 35-350 days. Atmospheric POP concentrations were monitored with a high-volume air sampler during the deployment period. Linear uptake was observed for all monitored PCBs and PBDEs over the full exposure time. Air-sampler equilibrium was observed for HCB after 6 months. In a second field study, SIP disks were deployed for one year at 10 sites on a latitudinal transect in the UK and Norway, at which air sampling has been undertaken previously with different passive air sampling media since 1994. The estimated concentrations and spatial distributions derived from the SIP disks were largely in agreement with previously reported data.  相似文献   

16.
A new sampling system has been developed for the measurement of time-averaged concentrations of organic micropollutants in aquatic environments. The system is based on the diffusion of targeted organic compounds through a rate-limiting membrane and the subsequent accumulation of these species in a bound, hydrophobic, solid-phase material. It provides a novel and robust solution to the problem of monitoring in situations where large temporal fluctuations in pollutant levels may occur. Accumulation rates are regulated by choice of diffusion-limiting membrane and bound solid-phase material and have been found to be dependent on the physico-chemical properties of individual target analytes. Two separate prototype systems are described: one suitable for the sampling of non-polar organic species with log octanol/water partition coefficient (log P) values greater than 4, the other for more polar species with log P values between 2 and 4. Both systems use the same solid-phase material (47 mm C18 Empore disk) as a receiving phase but are fitted with different rate-limiting membrane materials (polysulfone for the polar and polyethylene for the non-polar analytes). The two systems complement each other and together can be used for sampling a wider range of organic analytes than generally possible using current passive sampling techniques. Calibration data are presented for both devices. In each case, linear uptake kinetics were sustained, under constant conditions, for deployment periods of between 1 and 9 days. The effects of water temperature and turbulence on sampling rates have been quantitatively assessed. The performance of the system was further investigated by means of field exposures for one and two weeks in marine environments where calibrated samplers were used to determine the time-averaged concentrations of the polar biocides diuron and irgarol 1051. The quantitative results obtained using the passive sampler were compared with those obtained using spot sampling.  相似文献   

17.
Ambient ammonia concentrations, mainly originating from agricultural activities, have increased in the last few decades in Europe. As a consequence, critical loads on oligotrophic ecosystems such as forests and mires are greatly exceeded. Monitoring of ambient ammonia concentrations is necessary in order to investigate source-receptor relationships. Measuring ambient ammonia concentrations continuously with high time resolution is very expensive and cost-efficient systems are required. Where time resolution is of minor importance, several cost-effective systems, mainly dry denuder and passive samplers, can be applied. In this paper the Zürcher passive sampler, a diffusive sampling system, is presented. It is a Palmes type sampler with an acidic solution as absorbent and is easy to handle. It was tested at 46 sites in Switzerland over one year. The average concentration in ambient air was 2.5 microg m(-3) +/- 0.4 microg m(-3). The average of the blank values were 0.21 microg m(-3). The detection limit (double the standard deviation of the blank values) was 0.36 microg m(-3). Three passive samplers were exposed at each site and each period. The mean standard deviation of these triplicate measurements was 9.5%. Compared with a discontinuous tubular denuder system and a continuous annular denuder system, the deviation was less than 10%. The Zürcher passive sampler is a useful and cost-efficient tool to determine long-term average ammonia concentrations (one- to four-week periods) in ambient air for mean concentrations above 1 microg m(-3).  相似文献   

18.
A combined NO2-SO2 Radiello radial-type diffusive sampler was validated under controlled laboratory conditions and compared with NO2-SO2 results of 3 other type of samplers in a field comparison at two locations Ghent-Mariakerke and Borgerhout in Flanders. Laboratory exposures at different temperatures (-5, 10 and 30 degrees C) and relative humidities (0, 50 and 80% RH) in combination with varying concentration levels and exposure times were carried out, with a focus on extreme conditions. Concentration level and exposure time were changed together following suppliers linear working range of samplers and assuring absolute amounts of compounds on the sampler corresponding to those of environmental levels. The average uptake rate for NO2 for 24 hour exposures at 10 degrees C and 50% RH and tested concentration levels (+/-73, 146 and 293 ppb NO2) was 0.076 +/- 0.011 ng ppb(-1) min(-1). Uptake rates during all experiments were lower than the uptake rate given in the instruction manual of the sampler. A significant effect of temperature and relative humidity on NO2 uptake rate was observed. The temperature effect from 10 to 30 degrees C corresponds to the temperature effect given by the supplier of the samplers. High relative humidity (70 to 80%) caused a strong non-reproducible decrease of uptake rate for NO2 at 24 hour experiments but this effect was not observed at longer exposures except for the tests at -5 degrees C. At the tested temperature below zero in combination with high relative humidity the sampler showed anomalous behaviour for NO2. The possible effect of concentration level and exposure time for NO2 needs further research. The average uptake rate for SO2 calculated from all exposures is 0.478 +/- 0.075 ng of sulfate ion each ppb min of SO2 and accords to suppliers uptake rate. No clear effects of temperature, relative humidity or concentration level/exposure time on the uptake rate for SO2 were found, partly due to the large scatter of results. Although NO2 accuracy of Radiello samplers was better during field campaigns than during laboratory validation, IVL and OGAWA samplers gave better results for NO2. In the field, IVL samplers showed best agreement with the continuous analyzers for both NO2 and SO2.  相似文献   

19.
Exposure to persistent organic pollutants (POPs) and related compounds such as PCBs, brominated flame retardants, organochlorine pesticides and PAHs is regarded as an important environmental risk factor for humans. Recently concerns about POPs resulted in the international protocol called the Stockholm Convention on POPs. Air quality standards (indoor, outdoor and occupational) for PAHs and other POPs will also be applied in the EU in the future. This will bring requirements for monitoring, to check for compliance and to reduce human exposures to POPs. This can occur from point sources and in various microenvironments, indoors, outdoors and in workplaces. Monitoring can be undertaken either by an active (pumped) method or using a passive (diffusive) air sampling (PAS) device. To date, PAS for POPs have mainly been used as integrating (long-term) samplers for ambient (outdoor) air. However, there are several reasons to develop PAS for monitoring of POPs in occupational and indoor environments. We discuss the potential advantages, limitations and developments needed, so that PAS can be used reliably and routinely indoors and in occupational settings for POPs.  相似文献   

20.
Factors concerning NO2 uptake by the absorbent triethanolamine (TEA) in NO2 diffusion tubes are examined. Although the nominal freezing point of TEA is 17.9-21.2 degrees C, we show that, for a range of aqueous TEA solutions (0-20%, H2O), no freezing occurs even at -10 degrees C. Therefore NO2 collection efficiency is unlikely to be impaired by low temperature exposure. The recovery of TEA from the meshes of exposed samplers is determined as approximately 98%, even after 42 days, showing that the stability in situ of TEA is unaffected by long-term exposure. A model of a diffusion tube sampling array for simultaneous exposures, with a 0.1 m sampler spacing, shows that NO2 uptake by individual samplers is not affected by the presence of neighbouring tubes in the array. This is confirmed by sampler precision at two Cambridge sites. Four sampler preparation methods are compared for differences in NO2 uptake of exposed samplers. All methods employ TEA as absorbent, transferred by either dipping meshes in a TEA-acetone solution or pipetting aliquots of a TEA-H2O solution onto the meshes. For samplers prepared by three of the methods, no difference in NO2 uptake is found, but for samplers prepared using a 50% v/v TEA-H2O solution, a mean reduction of 18% is found. Student's t-tests show that the difference is highly significant (P < or = 0.001). Reasons for the difference are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号