首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Residential, industrial, commercial, institutional and recreational activities discharge degradable and non-degradable wastes that reach the coastal water through rivers and cause coastal pollution. In the present study, mass transport of pollutants by Adyar and Cooum Rivers to the coastal water as a result of land-based discharges was estimated during low tide. The lowest and the highest flow recorded in Adyar varied from 514.59 to 2,585.08×106 litres/day. Similarly, the flow in Cooum River fluctuated between 266.45 and 709.34×106 litres/day. The present study revealed that the Adyar River transported 53.89–454.11 t/d of suspended solids, 0.06–19.64 t/d of ammonia, 15.95–123.24 t/d of nitrate and 0.4–17.86 t/d of phosphate, 0.004–0.09 kg/d of cadmium, 0.15–1.29 kg/d of lead and 3.03–17.58 kg/d of zinc to the coastal water owing to its high discharge. Similarly, the Cooum River transported 11.87–120.06 t/d of suspended solids, 0.08–58.7 t/d of ammonia, 6.11–29.25 t/d of nitrate and 0.66–10.73 t/d of phosphate, 0.003–0.021 kg/d of cadmium, 0.02–0.44 kg/d of lead and 1.36–3.87 kg/d of zinc. A higher concentration of suspended solids was noticed in post monsoon and summer months. An increase in the mass transport of ammonia, nitrate, phosphate in summer months (April and May) and an increase in the mass transport of cadmium, lead and zinc were observed in monsoon months (October–December) in both the rivers. Thus mass transport of pollutants study reveal that Cooum and Adyar Rivers in Chennai contribute to coastal pollution by transporting inorganic and trace metals significantly through land drainage.  相似文献   

2.
A geographic information system was used to map and analyze nitrate, chloride, sulfate, and fluoride concentrations in 110 wells tapping the Woodbine Aquifer. The study area, covering ninecounties in north-central Texas, includes large percentages of both urban and agricultural land uses. Land use maps were compared with solute concentration data, and statistics were applied to detect associations between solutes, well depth, andland use. Anthropogenic sources such as fertilizer applications and natural sources such as gypsum, lignite, and clay deposits controlled nitrate, chloride, and sulfate concentrations, each inversely correlated with well depth. However, only one nitrate observation – from a shallow well in the aquifer's outcrop zone – surpassed the maximum contaminant level (MCL) of 44.3 mg L-1. By comparison, nearly half of the sulfate and several of the chloride observations surpassed the MCL of 250 mg L-1for each of those ions. Volcanic ash deposits influenced fluorideconcentrations, which directly correlated with well depth. There were no statistically significant associations between solute concentrations and land use. Low recharge rates and confining layers have mitigated anthropogenic impacts on solute levels in the aquifer.  相似文献   

3.
A shallow aquifer in central South Dakota was monitored for thepresence of nitrate and pesticides. A total of 593 nitrate samples and428 pesticide samples were analyzed from nine different sites and 14wells between 1989 and 1994. Nested wells were installed at four sitesto characterize the distribution pattern of nitrate and pesticidemovement in ground water. Nitrate concentrations and pesticidedetections were qualitatively compared with area precipitation and watertable fluctuations. The results indicate that nitrates tend to betransported by a leaching mechanism in a matrix flow and may appearin ground water within months after the fertilizer application in thefields. The pesticide movement is primarily controlled by geologicaland chemical characteristics of medium and pesticides.  相似文献   

4.
The purpose of this studywas to determine status and long-term trends of dissolved oxygen concentrations (DO) in Corpus Christi Bay, Texas, U.S.A. A 20-year record of randomized stations was used to determine the trend of surface water DO, salinity, and temperature over space and time. A 13-year record of two fixed stations was used to determine the temporal nutrient trends. A 10-year record of fixed stations in the southeastern region of Corpus Christi Bay was used to determine the status of disturbance caused by low DO in bottom waters. From 1982 to 2002, there was a significant decrease in surface water DO at a rate of 0.06 mg L−1 yr−1 and a significant increase in surface water temperature at a rate of 0.07°C yr−1. The southeastern region of Corpus Christi Bay had the lowest average DO, and during July and August, DO are steadily declining at a rate of 0.09 mg L−1 yr−1. It is not likely that eutrophication is causing hypoxia, because freshwater inflow rates have significantly decreased since 1941 and nutrient levels have not changed from 1987 to 2000. Even though long-term trends indicate that average surface DO is decreasing, disturbance by hypoxia appears to be stable, but this may be due to just eight years of data. In fact, if the current trend continues, surface water DO will not meet exceptional aquatic life standards (≤5 mgL−1) in 2032.  相似文献   

5.
This study evaluated the link between watershed activities and salt marsh structure, function, and condition using spatial emergy flow density (areal empower density) in the watershed and field data from 10 tidal salt marshes in Narragansett Bay, RI, USA. The field-collected data were obtained during several years of vegetation, invertebrate, soil, and water quality sampling. The use of emergy as an accounting mechanism allowed disparate factors (e.g., the amount of building construction and the consumption of electricity) to be combined into a single landscape index while retaining a uniform quantitative definition of the intensity of landscape development. It expanded upon typical land use percentage studies by weighting each category for the intensity of development. At the RI salt marsh sites, an impact index (watershed emergy flow normalized for marsh area) showed significant correlations with mudflat infauna species richness, mussel density, plant species richness, the extent and density of dominant plant species, and denitrification potential within the high salt marsh. Over the 4-year period examined, a loading index (watershed emergy flow normalized for watershed area) showed significant correlations with nitrite and nitrate concentrations, as well as with the nitrogen to phosphorus ratios in stream discharge into the marshes. Both the emergy impact and loading indices were significantly correlated with a salt marsh condition index derived from intensive field-based assessments. Comparison of the emergy indices to calculated nitrogen loading estimates for each watershed also produced significant positive correlations. These results suggest that watershed emergy flow is a robust index of human disturbance and a potential tool for rapid assessment of coastal wetland condition.  相似文献   

6.
Statistical methods and a Geographic Information System (GIS) were used to investigate potential indicators of ground water vulnerability to agricultural chemical contamination in a representative area of the Mississippi River alluvial aquifer. A total of 47 wells were sampled for analysis of nitrate, phosphorus, potassium, and 13 pesticides commonly-used in the area. Ten soil and hydrogeologic variables and five ground water vulnerability indices were examined to explain the variations of chemical concentrations. The results showed that no individual soil or hydrogeologic variables or their linear combinations could explain more than 25% of the variation of the chemical concentrations. A quadratic response surface model with the values of confining unit thickness, slope, soil permeability, depth to ground water, and recharge rate accounted for 62% of the variation of nitrate, 43% of P, and 83% of K, suggesting that the interactions among soil and hydrogeologic variables were significant. Observed trends of decreasing nitrate and P concentrations with increasing well depth and/or depth to ground water seemed to correlate with carbonate equilibrium in the aquifer and more reduced environment with depth. In view of uncertainties involved, it was recognized that the limitations associated with input data resolution used in GIS and the formulation of leaching indices limited their use for predicting ground water vulnerability. Misuse of pesticides could be another factor that would complicate the relationships between pesticide concentrations and the vulnerability indices.  相似文献   

7.
A novel technology for the removal of nitrogen from wastewater, autotrophic denitrification process with sulfur particle, has been developed. A respirometer was employed for the monitoring of nitrogen gas produced in the reactor. It was found that the autotrophic denitrification studied by gas production rate and nitrate depletion rate followed a first order reaction from the relationship. The reaction rate constant based on effective volume, kN was ranged from 2.67 to 3.07 h–1. The effective height was around 23.8 and 50% of the total height for 11.8 and 5.9 h of packed bed contact time, respectively. It was assumed that the reaction rate constants were similar in each experimental condition, PBCT = 11.9 and 5.9 h because there was little gradient of biomass concentration within 50% of the total height. The respirometry was found to be a simple and fast way to monitor the denitrification process. The method was especially useful for the determination of kinetic parameters.  相似文献   

8.
The inputs of atrazine and alachlor herbicides to surface and ground waters from irrigated areas dedicated to corn cultivation in the Castilla-León (C-L) region (Spain) as related to the application of both herbicides were studied. Enzyme-linked immunosorbent assays (ELISA) were used for monitoring the atrazine and alachlor concentrations in 98 water samples taken from these areas. Seventy-nine of the samples were of ground waters and 19 were of surface waters. The concentration ranges of the herbicides detected in the study period (October 1997–October 1998) were 0.04–25.3 g L–1 in the surface waters and 0.04–3.45 g L–1 in the ground waters for atrazine, and 0.06–31.9 g L–1 in the surface waters and 0.05–4.85 g L–1 in the ground waters in the case of alachlor. The highly significant correlation observed between the concentrations of both herbicides in the surface waters (r = 0.89, p < 0.001) pointed to a parallel transport of atrazine and alachlor to these waters. A study was made of the temporal evolution of the concentrations of both herbicides, and it was found a maximum recharge of atrazine in the ground waters for April 1998 and of alachlor in October 1997 and October 1998. The temporal evolution of the concentrations of both herbicides in surface waters was parallel. The highly significant correlations observed between atrazine concentrations determined by ELISA and by HPLC (r = 0.92, p < 0.001) and between alachlor concentrations also determined by both methods (r = 0.96, p < 0.001) confirmed the usefulness of ELISA for monitoring both herbicides in an elevated number of samples. Using HPLC, the presence in some waters of the alachlor ethanesulfonate (ESA) metabolite was found at a concentration range of 0.52–4.01 g L–1. However the interference of ESA in the determination of alachlor by ELISA was negligible. The inputs of atrazine and alachlor to waters found in this study, especially the inputs to ground waters, could pose a risk for human health considering that some waters, though sporadically, are even used for human consumption.  相似文献   

9.
Cadmium is an important contaminant of superphosphate. Market samples of superphosphate revealed a concentration of cadmium in the range of 18.2–28.5 mg/kg. Application of periodic excess doses of superphosphate in vineyards 5–35 years old has led to elevated concentrations of cadmium in the ground water in the vineyards. Ground water samples from different vineyards analysed for cadmium by atomic absorption spectrophotometry revealed concentrations of cadmium in the range of 3.2–99.2 µg/I. These concentrations of cadmium in the ground water can be regarded as significant, since ground water serves as the only source of water for the vineyards.  相似文献   

10.
Measurements of methane emission rates and concentrations in the soil were made during four growing seasons at the International Rice Research Institute in the Philippines, on plots receiving different levels of organic input. Fluxes were measured using the automated closed chambers system (total emission) and small chambers installed between plants (water surface flux). Concentrations of methane in the soil were measured by collecting soil cores including the gas phase (soil-entrapped methane) and by sampling soil solution in situ (dissolved methane). There was much variability between seasons, but total fluxes from plots receiving high organic inputs (16–24 g CH4 m–2) always exceeded those from the low input plots (3–9 g CH4 m–2). The fraction of the total emission emerging from the surface water (presumably dominated by ebullition) was greater during the first part of the season, and greater from the high organic input plots (35–62%) than from the low input plots (15–23%). Concentrations of dissolved and entrapped methane in the low organic input plots increased gradually throughout the season; in the high input plots there was an early-season peak which was also seen in emissions. On both treatments, periods of high methane concentrations in the soil coincided with high rates of water surface flux whereas low concentrations of methane were generally associated with low flux rates.  相似文献   

11.
Compared with sporadic conventional water sampling, continuous water-quality monitoring with optical sensors has improved our understanding of freshwater dynamics. The basic principle in photometric measurements is the incident light at a given wavelength that is either reflected, scattered, or transmitted in the body of water. Here, we discuss the transmittance measurements. The amount of transmittance is inversely proportional to the concentration of the substance measured. However, the transmittance is subject to interference, because it can be affected by factors other than the substance targeted in the water. In this study, interference with the UV/Vis sensor nitrate plus nitrite measurements caused by organic carbon was evaluated. Total or dissolved organic carbon as well as nitrate plus nitrite concentrations were measured in various boreal waters with two UV/Vis sensors (5-mm and 35-mm pathlengths), using conventional laboratory analysis results as references. Organic carbon increased the sensor nitrate plus nitrite results, not only in waters with high organic carbon concentrations, but also at the lower concentrations (< 10 mg C L?1) typical of boreal stream, river, and lake waters. Our results demonstrated that local calibration with multiple linear regression, including both nitrate plus nitrite and dissolved organic carbon, can correct the error caused by organic carbon. However, high-frequency optical sensors continue to be excellent tools for environmental monitoring when they are properly calibrated for the local water matrix.  相似文献   

12.
杭州市主城区浅层地下水水质现状   总被引:2,自引:1,他引:1  
调查了杭州市主城区浅层地下水水质现状。结果表明,杭州市主城区浅层地下水污染较重,"三氮"超标现象普遍,而主要污染项目为NH3-N、NO2--N、IMn和总大肠菌群及细菌总数。指出,农业面源污染和生活污水,是造成杭州市主城区浅层地下水氮污染的主要原因。提出分析了地下水水质污染的成因。指出应加强地下水保护以及地下水资源的质量管理。进行科学、合理地开发利用,实现地下水水资源的可持续利用,支持杭州市国民经济的可持续发展。  相似文献   

13.
A study was conducted at a sanitary sewage sludge(biosolids) disposal site in Springfield, Illinois, U.S.A. todetermine if biological denitrification played a significantfactor in attenuation of ground water nitrate values. The siteselected for this study is a 23 ha (57 acre) dedicatedbiosolids disposal facility located adjacent to a 75.7 millionliter per day (20 million gallons per day) municipal treatmentplant that uses anaerobic solids stabilization for treatment ofgenerated biosolids material. Biosolids have been disposed of byfixed-point spray applicators at the site since 1976, which hascaused ground water nitrate levels to increase significantlyabove background levels. A method was developed using aconservative chemical tracer to simulate the biosolidsapplication process and monitor the ground water directly beneaththe simulated disposal site. Results demonstrated a net declineof nitrates that could not be attributed to dilution alone.While the monitoring methodology developed for this study didnot directly estimate the denitrification rate, a rate foroverall nitrate reduction was calculated that could be consideredto take into account all transport and reduction mechanisms suchas denitrification, advection, dispersion and dilution.  相似文献   

14.
In this study, the variation of sewage quality was investigated and the active fraction of different microbial functional groups in biofilm was quantified in a 5.6-km trunk sewer line. The sewage quality including suspended solids, biochemical oxygen demand, total chemical oxygen demand (COD), total nitrogen, total Kjeldahl nitrogen, ammonia nitrogen, nitrite nitrogen, and nitrate nitrogen were measured and compared with the values in literatures. The results indicated that since the wastewater treatment plant was not operated at its full capacity, the concentrations of different compounds were lower compared with the values in literatures. The values of heterotrophic growth rate constant lay between 5.6 and 8.6 day???1. Its average value was 7.7 day???1. The values of heterotrophic lysis rate constant lay between 0.2 and 0.4 day???1. The active heterotrophic biomass in biofilm varied from 240 to 800 mg COD m???2 and average value was 497 mg COD m???2. The biofilm mass varied from 880 to 1,080 mg m???2. The percentage of heterotroph to biofilm mass fall within the range of 24.0–90.9% and average value was 52.9%. In the oxygen uptake rate batch tests, the biomass, growth rate constant, and lysis rate constant of autotroph could not be determined because the fraction of autotroph in biofilm was relatively few. It revealed that the degradation of organic matters, nitrification, and denitrification occurred in the trunk sewer line. But the results indicate that the condition seem favorable for nitrification.  相似文献   

15.
Most of the important factors causing differences in nutrient losses and their interaction were analysed in three small catchments that are located in partially different geographic and climatic conditions in Lithuania. The investigation revealed that climatic factors change the amount and pattern of water discharge over year (larger water discharge during winter in the catchment located closer to the sea), but nutrient leaching is more dependent on land use. Agricultural factors, such as larger cultivated area and excessive fertilisation in one catchment cause larger nitrogen losses (15 kg N ha–1 year–1). Large area of non-intensively used grassland leads to very small nitrogen losses (5.7 kg N ha–1 year–1) in another catchment. However, larger water discharge combined with loamy sandy soils leads to comparatively high nitrogen losses (12 kg N ha–1 year–1). The highest P losses (0.318 kg P ha–1 year–1) occurred in the catchment with hilly relief and clay soil texture. In summary, extensive agriculture in the post-Soviet countries has reduced the importance of agricultural activity for the extent of nutrient losses and agricultural factors (cultivation, fertilisation and livestock density) are responsible for the losses only in the region of sufficient agricultural activity (N input – 71.5 kg N ha–1, livestock density – 0.87 LU ha–1).  相似文献   

16.
This paper presents the development of a regional flow simulation model of the stream–aquifer system of Ismarida plain, northeastern Greece. It quantifies the water budget for this aquifer system and describes the components of groundwater and the characteristics of this system on the basis of results of a 3-year field study. The semiconfined aquifer system of Ismarida Lake plain consists of unconsolidated deltaic clastic sediments, is hydraulically connected with Vosvozis River, and covers an area of 46.75 km2. The annual precipitation ranges in the study area from 270 to 876 mm. Eighty-seven irrigation wells are densely located and have been widely used for agricultural development. Groundwater flow in this aquifer was simulated with MODFLOW. Model calibration was done with observed water levels, and match was excellent. To evaluate the impacts of the current pumping schedule and propose solutions, four management scenarios were formulated and tested with the model. Based on model results, the simulated groundwater budget indicates that there must be approximately 33% decrease of withdrawals to stop the dramatic decline of groundwater levels. The application of these scenarios shows that aquifer discharge to the nearby river would be very low after a 20-year period.  相似文献   

17.
The inorganic nitrogen transformations occurring at a municipal waste leachate treatment facility were investigated. The treatment facility consisted of a collection well and an artificial wetland between two aeration ponds. The first aeration pond showed a decrease in ammonium (from 3480 (± 120) to 630(± 90) mg ⋅ L−1), a reduction in inorganic nitrogen load (3480 to 1680 mg N ⋅ L−1), and an accumulation of nitrite (< 1.3 mg-N ⋅ L−1 in the collection well, to 1030 mg-N ⋅ L−1). Incomplete ammonium oxidation was presumably the result of the low concentration of carbonate alkalinity (∼2 mg ⋅ L−1), which may cause a limitation in the ammonium oxidation rate of nitrifiers. Low carbonate alkalinity levels may have been the result of stripping of CO2 from the first aeration pond at the high aeration rates and low pH. Various chemodenitrification mechanisms are discussed as the reason for the reduction in the inorganic nitrogen load, including; the reduction of nitrite by iron (II) (producing various forms of gaseous nitrogen); and reactions involving nitrous acid. It is suggested that the accumulation of nitrite may be the result of inhibition of nitrite oxidizers by nitrous acid and low temperatures. Relative to the first aeration pond, the speciation and concentration of inorganic nitrogen was stable in the wetlands and 2nd aeration pond. The limited denitrification in the wetlands most probably occurred due to low concentrations of organic carbon, and short retention times.  相似文献   

18.
Following restoration changes in Antoninek Reservoir physico-chemical and biological processes in the water column and bottom sediments were measured to outline mechanisms of changes in nitrogen, phosphorus and organic matter concentrations during water flow through this reservoir. Intensive mineralisation of organic matter in the shallow sediments stimulated primary production and influenced increasing ammonia and nitrite nitrogen concentrations. Two main factors affected concentrations of phosphorus: (1) its presence in the external loads of river waters entering the reservoir, more important in the colder seasons as the water discharge was higher and (2) from the internal loads coming from bottom sediments. The quality of the river water during its flow through this reservoir improved for most parameters and seasons. However, concentrations of nutrients were still high in waters flowing out from the reservoir and in some months they were higher in the outflow than in waters entering the reservoir.  相似文献   

19.
Delivery of nitrogen from farmed fields to the stream network is an ongoing water quality issue in central North America and other parts of the world. Although fertilization and other farming practices have been refined to produce environmental improvements, stemming loss of nitrogen, especially in the soluble nitrate form, is a problem that has seemingly defied solution. The Iowa Nutrient Reduction Strategy is a policy initiative designed to implement conservation and other farm management practices to produce reductions in nitrate loading. The strategy does not focus on how the streams themselves may or may not be processing nitrogen and reducing downstream loading. We used continuous high-frequency nitrate and discharge monitoring over 3 years at two sites separated by 18 km in a low-order, agricultural stream in eastern Iowa to estimate how nitrogen is processed, and whether or not these processes are reducing downstream loading. We conclude that the upstream to downstream nitrate concentration decline between the two sites was not driven by denitrification. These data also show that nitrate concentrations are closely coupled to discharge during periods of adequate moisture, but decoupling of concentration from discharge occurs during dry periods. This decoupling is a possible indicator of in-stream nitrate processing. Finally, nitrate concentrations are likely diluted by water sourced from non-row crop land covers in the lower reaches of the watershed.  相似文献   

20.
A study was conducted to determine the levels of heavy metals Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn along with physico-chemical parameters in ground waters of Aligarh city, U.P. (India). Twenty seven samples of hand pump water and twenty three samples of municipal water supply were collected from different localities of the Aligarh city, five times during the period of two months at intervals of 12 days. The samples were analysed for physico-chemical characteristics (pH, electrical conductivity, chlorides, sulphates, total hardness, total alkalinity, nitrate-nitrogen, fluoride, calcium and magnesium) and heavy metal contents. The concentrations of heavy metals in the hand pump water samples were found in the ranges of Cd (ND-5.00); Cr (ND-30.00); Cu (ND-82.50); Fe (16.80–460.00); Mn (ND-425.00); Ni (ND-25.00); Pb (ND-25.00) and Zn (28.60–775.00) g l–1. The heavy metal concentrations in the municipal water supply samples were found to be Cd (ND-5.00); Cr (ND-25.00); Cu (ND-37.50); Fe (8.00–37.50); Mn (ND-320.00); Ni (ND-25.00); Pb (ND-25.00) and Zn (2.00–271.87) g l–1.It appears from the results of these studies the concentrations of Cd, Cr, Cu, Ni, Pb, and Zn in the ground waters of the Aligarh City were found to be lower than the prescribed limits of World Health Organisation (1984), whereas the values of Fe and Mn were found above the prescribed limits in some localities. The chloride total hardness and nitrate-nitrogen were comparatively higher in the hand pump water than the municipal supply water. The reason of higher values of these parameters may be ascribed to the surface disposal of sewage wastes, wastes from metal processing industries and other house hold refuses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号