首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From a policy perspective, it is important to understand forestry effects on surface waters from a landscape perspective. The EU Water Framework Directive demands remedial actions if not achieving good ecological status. In Sweden, 44 % of the surface water bodies have moderate ecological status or worse. Many of these drain catchments with a mosaic of managed forests. It is important for the forestry sector and water authorities to be able to identify where, in the forested landscape, special precautions are necessary. The aim of this study was to quantify the relations between forestry parameters and headwater stream concentrations of nutrients, organic matter and acid-base chemistry. The results are put into the context of regional climate, sulphur and nitrogen deposition, as well as marine influences. Water chemistry was measured in 179 randomly selected headwater streams from two regions in southwest and central Sweden, corresponding to 10 % of the Swedish land area. Forest status was determined from satellite images and Swedish National Forest Inventory data using the probabilistic classifier method, which was used to model stream water chemistry with Bayesian model averaging. The results indicate that concentrations of e.g. nitrogen, phosphorus and organic matter are related to factors associated with forest production but that it is not forestry per se that causes the excess losses. Instead, factors simultaneously affecting forest production and stream water chemistry, such as climate, extensive soil pools and nitrogen deposition, are the most likely candidates The relationships with clear-felled and wetland areas are likely to be direct effects.  相似文献   

2.
Over 300,000 caddisfly specimens representing 249 species were collected from nearly 250 sites throughout Minnesota during 2000 and 2001 to determine the effects of human disturbance on the composition of caddisfly trophic functional groups at the landscape level. Canonical correspondence analysis determined that stream width was the most important variable influencing functional group composition in regions of the state with relatively low disturbance, and that differences in the caddisfly fauna between sizes of streams generally followed trends predicted by the river continuum concept. In regions of the state with moderate disturbance, both stream width and the percentage of disturbed habitat upstream of a site were important variables influencing functional group composition. In highly disturbed regions, no variables corresponded to changes in the composition of caddisfly functional groups. Instead, ecosystems were homogeneous: fine-particle filtering collectors dominated in all sizes of streams. The observed aquatic ecosystem homogenization is attributed mostly to input of fine-particle organic and inorganic sediment from extensive agriculture.  相似文献   

3.
The UK is legally required by the EU Water Framework Directive (WFD) to improve the environmental quality of inland and coastal waters in the coming years. Historic metal mine sites are recognised as an important source of some of the elements on the WFD priority chemicals list. Despite their contamination potential, such sites are valued for their heritage and for other cultural and scientific reasons. Remediating historic mining areas to control the contamination of stream waters, whilst also preserving the integrity of the mine site, is a challenge but might be achieved by novel forms of remediation. In this study, we have carried out environmental monitoring at a historic, and culturally-sensitive, lead-silver mine site in southwest England and have undertaken a pilot experiment to investigate the potential for a novel, non-invasive remediation method at the site. Concentrations of Pb and Zn in mine spoil were clearly elevated with geometric mean concentrations of 6,888 and 710 microg g(-1), respectively. Mean concentrations of Pb in stream waters were between 21 and 54 microg l(-1), in exceedance of the WFD environmental quality standard (EQS) of 7.2 microg l(-1) (annual average). Mean Zn concentrations in water were between 30 and 97 microg l(-1), compared to the UK EQS of 66.5 microg l(-1) (average). Stream sediments within, and downstream from, the mining site were similarly elevated, indicating transport of mine waste particles into and within the stream. We undertook a simple trial to investigate the potential of hydroxyapatite, in the form of bonemeal, to passively remove the Pb and Zn, from the stream waters. After percolating through bonemeal in a leaching column, 96-99% of the dissolved Pb and Zn in stream water samples was removed.  相似文献   

4.
As a consequence of the accumulation of anthropogenic Pb in upland catchments, there has been much recent concern about the potential mobilisation and transport of Pb from the soils to receiving waters and also the possible harmful effects that this might have on aquatic biota. This paper presents the findings of a two-year study of Pb behaviour in an organic-rich upland catchment at Glensaugh in NE Scotland. Pb inputs to the catchment were characterised by direct measurements of Pb concentration and (206)Pb/(207)Pb ratios in rain water and interception. Pb outputs from the catchment were calculated from measurements on stream water samples taken from the two main streams, the Cairn Burn and Birnie Burn. The relative contribution of Pb from groundwater and throughflow, under different flow conditions (base flow and high flow), to stream waters was investigated via analysis of springs sourced from groundwater and of waters flowing through the various soil horizons (S (surface), A, B, C, and D), respectively. The outcome of intensive sampling and analysis over the two-year time period was that, even with marked reduction in Pb inputs over the past two decades, the catchment was still acting as a net sink for the current atmospheric deposition. Although the Pb isotopic signature for stream water is very similar to that for the contemporaneous rain water ((206)Pb/(207)Pb approximately 1.15-1.16), only a small portion of the rain water is transferred directly to stream water. Instead, the Pb input is transferred to the stream waters mainly via groundwater and it was also confirmed that the latter had a similar Pb isotopic signature. From the Pb isotopic measurements on throughflow waters, however, Pb being removed via the streams contained some previously deposited Pb, i.e. mobilisation of a small portion of soil-derived anthropogenic Pb was occurring. These findings are important not only with respect to the source/sink status of the catchment but also for calculation of the extent of retention of the current atmospheric Pb inputs, which must take account of the release of previously deposited Pb from the catchment soils, a process occurring mainly under high flow conditions.  相似文献   

5.
Effects of Forest Management Practices on Mid-Atlantic Streams   总被引:1,自引:0,他引:1  
Agricultural and urban land use activities have affected stream ecosystems throughout the mid-Atlantic region. However, over 60% of the mid-Atlantic region is forested. A study was conducted to investigate the effects of management practices on forested stream ecosystems throughout the mid-Atlantic region. The study consisted of two phases: Phase 1 was a literature synthesis of information available on the effects of forest management practices on stream hydrology, erosion and sedimentation, riparian habitat alteration, chemical addition, and change in biotic diversity in the mid-Atlantic region. In Phase 2, data from mid-Atlantic streams were analyzed to assess the effects of forest land use on stream quality at the regional scale. Typically, it is the larger order streams in which monitoring and assessment occurs—3rd order or higher streams. The impacts of forest management practices, particularly hydrologic modifications and riparian buffer zone alteration, occur predominantly in first and second order streams with cumulative impacts translating to higher order streams. Based on the literature review and mid-Atlantic Highland streams analysis, there are short-term (e.g., 2 to 5 years) effects of forest management practices on stream quality at local scales. However, signatures of cumulative effects from forest management practices are not apparent at regional scales in the Highlands. In general, forested land use is associated with good stream quality in the region compared with other land use practices.  相似文献   

6.
Compared with sporadic conventional water sampling, continuous water-quality monitoring with optical sensors has improved our understanding of freshwater dynamics. The basic principle in photometric measurements is the incident light at a given wavelength that is either reflected, scattered, or transmitted in the body of water. Here, we discuss the transmittance measurements. The amount of transmittance is inversely proportional to the concentration of the substance measured. However, the transmittance is subject to interference, because it can be affected by factors other than the substance targeted in the water. In this study, interference with the UV/Vis sensor nitrate plus nitrite measurements caused by organic carbon was evaluated. Total or dissolved organic carbon as well as nitrate plus nitrite concentrations were measured in various boreal waters with two UV/Vis sensors (5-mm and 35-mm pathlengths), using conventional laboratory analysis results as references. Organic carbon increased the sensor nitrate plus nitrite results, not only in waters with high organic carbon concentrations, but also at the lower concentrations (< 10 mg C L?1) typical of boreal stream, river, and lake waters. Our results demonstrated that local calibration with multiple linear regression, including both nitrate plus nitrite and dissolved organic carbon, can correct the error caused by organic carbon. However, high-frequency optical sensors continue to be excellent tools for environmental monitoring when they are properly calibrated for the local water matrix.  相似文献   

7.
For less-developed regions like the Blue Ridge Mountains, data are limited that link basin-scale land use with stream quality. Two pairs of lightly-impacted (90–100% forested) and moderately-impacted (70–80% forested) sub-basins of the upper Little Tennessee River basin in the southern Blue Ridge were identified for comparison. The pairs contain physically similar stream reaches, chosen for the purpose of isolating forest conversion as a potential driver of any detected differences in water quality. Streams were sampled during baseflow conditions twice monthly over a six-month period from September 2003 through February 2004. Parametric t-tests were run for each parameter measured between the lightly-and moderately-impacted streams within each pair. Statistically significantly higher mean values of suspended and dissolved solids, nitrate, specific conductivity, turbidity, and temperature were observed in the moderately impacted streams versus the lightly impacted streams in both pairs, while dissolved oxygen levels were lower in the moderately-impacted streams. No significant differences were demonstrated in orthophosphate or ammonium concentration. A near-bankfull runoff event on February 6, 2004, was sampled for stormflow values, and the results support baseflow findings. The water quality of these streams is very good when compared with lower relief areas like the Piedmont, and none of the parameters measured in this study exceeds levels of known threat to stream biota. However, the demonstration that moderate reductions in forest cover are associated with stream water quality degradation carries important implications for stream management in this rapidly developing mountainous region.  相似文献   

8.
In Yangmingshan National Park, located in the northern part of the Taiwan Island, there is a very rare area where fish (Channa asiatica) live in spite of acid environments. The origin of the acid in local acid ponds and rivers and the evolution of the water chemistry are discussed on the basis of sulfur stable isotope ratios and chemical equilibria. One of the sources of the acid is sulfuric acid, which is derived from the oxidation of hydrogen sulfide in volcanic gas gushing out from fumaroles around the area and from acid deposition supplied from Taipei City. It is also derived from the oxidation of pyrite: the sulfur stable isotope ratios of delta 34S of +1@1000 to +4@1000 (relative to CDT) of sulfate in acid pond waters (pH 3-4) could be related to those of hydrogen sulfide in volcanic gas, pyrite in local pond sediments and soils, and sulfate in rain water. One acid source is sulfuric and hydrochloric acids arising in springs from geothermal activity: the delta 34S values were characterised by +13@1000 to +17@1000 sulfate-S, which was provided by a disproportionation reaction of sulfur dioxide in the depths. Another acid source could be the oxidation of iron(II). Under acidic conditions, the water-rock reaction gives rise to high concentrations of aluminium and iron. While flowing down surface streams, iron(II) is oxidised to iron(III) and then hydrolysed to cause further acidification under oxic conditions. The concentrations of iron and aluminium are controlled by redox and dissolution equilibria.  相似文献   

9.
Biodiversity surveys are often hampered by the inability tocontrol extraneous sources of variability introduced intocomparisons of populations across a heterogenous landscape. If not specifically accounted for a priori, this noisecan weaken comparisons between sites, and can make itdifficult to draw inferences about specific ecologicalprocesses. We developed a terrain-based, paired-sitesampling design to analyze differences in aquaticbiodiversity between streams draining eastern hemlock (Tsuga canadensis) forests, and those draining mixedhardwood forests in Delaware Water Gap National RecreationArea (USA). The goal of this design was to minimize variancedue to terrain influences on stream communities, whilerepresenting the range of hemlock dominated streamenvironments present in the park. We used geographicinformation systems (GIS) and cluster analysis to define andpartition hemlock dominated streams into terrain types basedon topographic variables and stream order. We computedsimilarity of forest stands within terrain types and usedthis information to pair hemlock-dominated streams withhardwood counterparts prior to sampling. We evaluated theeffectiveness of the design through power analysis and foundthat power to detect differences in aquatic invertebratetaxa richness was highest when sites were paired and terraintype was included as a factor in the analysis. Precision ofthe estimated difference in mean richness was nearly doubledusing the terrain-based, paired site design in comparison toother evaluated designs. Use of this method allowed us tosample stream communities representative of park-wide forestconditions while effectively controlling for landscapevariability.  相似文献   

10.
The concentrations of manganese (Mn) in the Upper River Severn (the Plynlimon catchments) are examined in relation to rainfall, cloud water, throughfall, stemflow and stream water concentrations where there is over 20 years of monitoring data available. Manganese concentrations are particularly low in rainfall and cloud water, with maximum concentrations occurring under low volumes of catch due to atmospheric "washout" of contaminants and dry deposition. There is strong Mn enrichment in throughfall and stemflow and this is probably linked to cycling through the vegetation. Manganese in the streams and groundwaters are primarily supplied from within-catchment sources. The highest concentrations occur within the tree canopy probably due to element cycling and in groundwaters due to mobilisation from the rock. Manganese concentrations in streams are at their lowest during spring and summer following long dry spells, with rapid increases following subsequent rain. There is no clear long-term trend in Mn concentration in the streams although there are increases in Mn concentrations for years when there is extensive felling of spruce plantation forest and in 1995 following a more extensive dry period. New high resolution monitoring picks up the effects of the rising limb of the hydrograph when concentrations rapidly increase, diurnal patterns during summer low-flow periods and contrasting dynamics between moorland and forested catchments.  相似文献   

11.
Acid mine drainage and metal loads from hardrock mines to surface waters is a significant problem in the western USA and many parts of the world. Mines often occur in mountain environments with fractured bedrock aquifers that serve as pathways for metals transport to streams. This study evaluates impacts from current and potential future groundwater metal (Cd, Cu, and Zn) loads from fractures underlying the Gilt Edge Mine, South Dakota, on concentrations in Strawberry Creek using existing flow and water quality data and simple mixing/dilution mass balance models. Results showed that metal loads from bedrock fractures to the creek currently contribute <1% of total loads. Even if background water quality is achieved upstream in Strawberry Creek, fracture metal loads would be <5%. Fracture loads could increase substantially and cause stream water quality standards exceedances once groundwater with elevated metals concentrations in the aquifer matrix migrates to the fractures and discharges to the stream. Potential future metal loads from an upstream fracture would contribute a small proportion of the total load relative to current loads in the stream. Cd has the highest stream concentrations relative to standards. Even if all stream water was treated to remove 90% of the Cd, the standard would still not be achieved. At a fracture farther downstream, the Cd standard can only be met if the upstream water is treated achieving a 90% reduction in Cd concentrations and the median stream flow is maintained.  相似文献   

12.
The Bear Brook Watershed in Maine (BBWM) is a long-term, paired watershed experiment that addresses the effects of acid and nitrogen (N) deposition on whole watersheds. To examine stream response at BBWM, we synthesized data on organic matter dynamics, including leaf breakdown rates, organic matter inputs and standing stocks, macroinvertebrate secondary production, and nutrient uptake in treated and reference streams at the BBWM. While N concentrations in stream water and leaves have increased, the input, standing stocks, and breakdown rates of leaves, as well as macroinvertebrate production, were not responsive to acid and N deposition. Both chronic and acute increases of N availability have saturated uptake of nitrate in the streams. Recent experimental increases in phosphorus (P) availability enhanced stream capacity to take up nitrate and altered the character of N saturation. These results show how the interactive effects of multiple factors, including environmental flow regime, acidification, and P availability, may constrain stream response to chronic N deposition.  相似文献   

13.
Sediment cores from four boreal and remote lakes in a south to north transect in central Sweden were analysed for acid leachable silver, antimony, thallium and indium in the solid sediment phase and the corresponding porewater. Dating of the cores was made by their content of acid leachable lead and the (206)Pb/(207)Pb ratio, in one lake also by (210)Pb. The impact of diagenesis on element redistribution in the sediments was included and found to be minor except for thallium. The results show lowered concentrations towards the north and most intense accumulation after the Second World War, which is taken as evidence for atmospheric deposition being the primary source. Indium has declining concentrations in recent strata while silver and antimony increase. Thallium has lowered acid-leachable concentrations in recent strata. For all metals the impact of domestic industrialisation as well as the early industrialisation of central Europe is discernible. Only thallium appears to reach a geological background at depths that correspond to the late 18th century. For the other metals elevated levels are concluded.  相似文献   

14.
The phosphate concentration in mountainous stream water can be a measure of the forest condition, because its concentration will be low when the biomass in the forest is increasing and vice versa when the forest is declining. To investigate the seasonal change in the dissolved phosphate concentration of the mountainous stream water of the Yamakami River, Kitakyushu, from June 2009 to August 2010, and the regulation mechanism of the phosphate concentration, solid-phase spectrophotometry, which can be applicable to natural water without any pretreatment procedures, was employed for the determination of phosphate at μg P L(-1) levels in natural water. The phosphate concentrations in the mountainous stream waters at 6 sites ranged from 2.2 to 13 μg P L(-1), and those from the catchment area of the steady state forest were 5.3 ± 1.6 (±1 SD) μg P L(-1). Changes in the concentration were fairly small even during a storm runoff. The average phosphate concentration of rain was 2.8 ± 0.7 μg P L(-1), about half of the concentration in the stream water. The rate of runoff in forest areas is generally considered to be about 50% of the total precipitation. For a forest under a climax condition, the phosphate concentration is estimated to be regulated by the fallout and evapotranspiration (α = 0.05). At one of the sites, an upstream tributary, where a fairly big landslide occurred before July in 2009, the phosphate concentration was the highest, suggesting that the biomass may still be decreasing. For all of the six sites examined, a characteristic seasonal change in phosphate concentration was observed, reflecting the local budget between the biological decomposition of plant matter and the consumption by the biomass. The increase in the phosphate concentration during late spring and early summer may result from the extensive decomposition of plant litter mainly supplied in autumn and of plant matter relating to spring blooming such as fallen flowers, pollen and immature fruits. The proposed method using the phosphate concentration in surface stream waters without the period of the seasonal change mentioned above is expected to be very helpful in diagnosing the condition of forests.  相似文献   

15.
Documenting long-term trends in mercury deposition and/or accumulation is important in setting regulatory benchmarks, modeling contaminant transfer and flux, measuring success of environmental controls, and even assigning responsibility for pollution. We conducted a study to compare mercury concentrations in small fishes from “high-mercury” and “low-mercury” regions of Illinois, as well as to examine historic patterns of mercury availability using preserved fishes. Mercury concentrations were greater in four species of small fishes collected from a stream in a “high-mercury” region than in those same taxa collected from a stream in a “low-mercury” area in Illinois. Mercury concentrations in blackstripe topminnows (Fundulus notatus) declined dramatically between 1900 and 1961/2006 in the “high-mercury” stream, presumably due reductions in mercury releases from local and regional sources. Preserved fish had an apparent increase in mercury concentrations for up to 12 months, which is consistent with changes in mass and loss of proteins observed in other studies, and we recommend that recent samples be preserved for at least 12 months before comparison with older fluid-preserved material. Based on our results, further studies of mercury in small fishes in Illinois streams appear warranted.  相似文献   

16.
Management of stream nutrients is becoming increasingly important in order to protect both water quality and aquatic resources throughout the USA. Using an extensive water quality database from the long-term Maryland Biological Stream Survey (MBSS), we describe nutrient relationships to landscape characteristics as total nitrogen (TN) and total phosphorus (TP) of small-order, non-tidal streams in USEPA L2 and L3 ecoregions in Maryland and by MBSS stream order at the L2 and L3 ecoregion levels. To protect stream ecosystem integrity, preliminary reference nutrient estimates (TN and TP) as percentiles (25th of all stream reaches and 75th of stream reference reaches) for the six Maryland L3 ecoregions are: Blue Ridge TN 0.29 and 0.64 mg/L, TP 0.0065 and 0.0090 mg/L; Central Appalachians TN 0.40 and 1.0 mg/L, TP 0.0060 and 0.015 mg/L; Middle Atlantic Coastal Plains TN 0.93 and 2.5 mg/L, TP 0.094 and 0.065 mg/L; Northern Piedmont TN 1.6 and 1.8 mg/L, TP 0.010 and 0.015 mg/L; Ridge and Valley TN 0.40 and 0.98 mg/L, TP 0.0063 and 0.012 mg/L; and Southeastern Plains TN 0.33 and 0.82 mg/L, TP 0.016 and 0.042 mg/L. High levels of both TN and TP are present in many streams found in non-tidal watersheds associated with all Maryland ecoregions, but are especially elevated in the Northern Piedmont and Middle Atlantic Coastal Plain ecoregions, with the latter second-order streams (average TN?>?2.9 mg/L) significantly higher than all other ecoregion–order combinations. Across all six ecoregions, mean nutrient loading for both TN and TP was generally equivalent in first-order streams to nutrient concentrations seen in both second- and third-order streams, indicating a definite need to increase efforts in preventing nutrients from entering first-order streams. Small-order stream nutrient levels are the drivers for subsequent TN and TP inputs into the upper freshwater tidal reaches of the Chesapeake Bay, resulting in a potential risk for altered estuarine ecosystems.  相似文献   

17.
Nine stream sites in the Blackfoot River, Salt River, and Bear River watersheds in southeast Idaho, USA were sampled in May 2001 for water, surficial sediment, aquatic plants, aquatic invertebrates, and fish. Selenium was measured in these aquatic ecosystem components, and a hazard assessment was performed on the data. Water quality characteristics such as pH, hardness, and specific conductance were relatively uniform among the nine sites. Of the aquatic components assessed, water was the least contaminated with selenium because measured concentrations were below the national water quality criterion of 5 g/L at eight of the nine sites. In contrast, selenium was elevated in sediment, aquatic plants, aquatic invertebrates, and fish from several sites, suggesting deposition in sediments and food web cycling through plants and invertebrates. Selenium was elevated to concentrations of concern in fish at eight sites (> 4 g/g in whole body). A hazard assessment of selenium in the aquatic environment suggested a moderate hazard at upper Angus Creek (UAC) and Smoky Creek (SC), and high hazard at Little Blackfoot River (LiB), Blackfoot River gaging station (BGS), State Land Creek (SLC), upper (UGC) and lower Georgetown Creek (LGC), Deer Creek (DC), and Crow Creek (CC). The results of this study indicate that selenium concentrations from the phosphate mining area of southeast Idaho were sufficiently elevated in several ecosystem components to cause adverse effects to aquatic resources in southeastern Idaho.  相似文献   

18.
This study was conducted to determine the response of stream water DOC and organic acidity to increased inputs of ammonium sulfate to a whole catchment. Precipitation, throughfall, soil solutions (from Spodosols) and stream waters were characterized for DOC concentrations and fractions (hydrophobic acids and neutrals, hydrophilic acids, bases, and neutrals) in both the control (East Bear) and the treatment (West Bear) catchments of Bear Brook Watershed, Maine (BBWM), a northern hardwood forest. In all solutions except precipitation, DOC was composed primarily of organic acids, with hydrophobic acids dominating (> 60% of DOC) in forest floor leachates (5000 mol C L-1), and a balance of hydrophobic and hydrophilic acids in deep B horizons and stream waters ( 150 mol C L-1). Stream waters had higher concentrations of DOC during storm or snowmelt events (high discharge), often reaching 300 to 400 mol C L-1. Forest floor leachate C was rapidly attenuated by the mineral soils under all flow conditions, indicating how important mineral soil sorption of DOC was in reducing the loss of C via surface water from BBWM. No differences occurred between control and treatment streams for concentration or composition of DOC due to treatment from 1989 through 1994. In 1995, West Bear Brook had much lower concentrations of DOC than East Bear for the first time. However, this occurred during a year of record low runoff, suggesting that hydrology may have affected export of C. Average annual export of DOC from the catchments was similar (1000 to 2000 mol C ha-1 yr-1). Organic anions in streamwaters increased slightly during high flow events (e.g., East Bear had means of 15 and 19 eq L-1 organic anions during base flow and high discharge in 1995). Treatment of West Bear caused a decrease in organic anions, both in concentration and contribution to overall anion composition (organic anions during high discharge as a percentage of total anions decreased from about 8 to 4% for 1987-89 and 1993-95 samples, respectively). This was probably due to decreased solution pH (greater protonation of organics) and higher concentrations of inorganic anions. Overall, there were no clear, detectable changes in stream water DOC, with only minor changes in organic anions, as a result of treatment with ammonium sulfate.  相似文献   

19.
To assess the concern over declining base cation levels in forest soils caused by acid deposition, input-output budgets (1990s average) for sulphate (SO4), inorganic nitrogen (NO3-N; NH4-N), calcium (Ca), magnesium (Mg) and potassium (K) were synthesised for 21 forested catchments from 17 regions in Canada, the United States and Europe. Trend analysis was conducted on monthly ion concentrations in deposition and runoff when more than 9 years of data were available (14 regions, 17 sites). Annual average SO4 deposition during the 1990s ranged between 7.3 and 28.4 kg ha−1 per year, and inorganic nitrogen (N) deposition was between 2.8 and 13.8 kg ha−1 per year, of which 41–67% was nitrate (NO3-N). Over the period of record, SO4 concentration in deposition decreased in 13/14 (13 out of 14 total) regions and SO4 in runoff decreased at 14/17 catchments. In contrast, NO3-N concentrations in deposition decreased in only 1/14 regions, while NH4-N concentration patterns varied; increasing at 3/14 regions and decreasing at 2/14 regions. Nitrate concentrations in runoff decreased at 4/17 catchments and increased at only 1 site, whereas runoff levels of NH4-N increased at 5/17 catchments. Decreasing trends in deposition were also recorded for Ca, Mg, and K at many of the catchments and on an equivalent basis, accounted for up to 131% (median 22%) of the decrease in acid anion deposition. Base cation concentrations in streams generally declined over time, with significant decreases in Ca, Mg and K occurring at 8, 9 and 7 of 17 sites respectively, which accounted for up to 133% (median 48%) of the decrease in acid anion concentration. Sulphate export exceeded input at 18/21 catchments, likely due to dry deposition and/or internal sources. The majority of N in deposition (31–100%; median 94%) was retained in the catchments, although there was a tendency for greater NO3-N leaching at sites receiving higher (<7 kg ha-1 per year) bulk inorganic N deposition. Mass balance calculations show that export of Ca and Mg in runoff exceeds input at all 21 catchments, but K export only exceeds input at 16/21 sites. Estimates of base cation weathering were available for 18 sites. When included in the mass balance calculation, Ca, Mg and K exports exceeded inputs at 14, 10 and 2 sites respectively. Annual Ca and Mg losses represent appreciable proportions of the current exchangeable soil Ca and Mg pools, although losses at some of the sites likely occur from weathering reactions beneath the rooting zone and there is considerable uncertainty associated with mineral weathering estimates. Critical loads for sulphur (S) and N, using a critical base cation to aluminium ratio of 10 in soil solution, are currently exceeded at 7 of the 18 sites with base cation weathering estimates. Despite reductions in SO4 and H+ deposition, mass balance estimates indicate that acid deposition continues to acidify soils in many regions with losses of Ca and Mg of primary concern. The U.S. Government's right to retain a non-exclusive, royalty free licence in and to any copyright is acknowledged. The Canadian Crown reserves the right to retain a non-exclusive, royalty free licence in and to any copyright.  相似文献   

20.
The seasonal variations and spatial distributions of 4-tert-octylphenol (OP), 4-nonylphenol (NP) and bisphenol A (BPA) in surface waters, suspended solids and surface sediments in the Huangpu River and its tributaries (Suzhou River and Yunzao Brook) were firstly investigated. The mean concentrations of OP, NP and BPA in the three rivers were 10.59, 120.96 and 22.93 ng L?1 in surface waters, 199.87, 2,300.87 and 84.11 ng g?1 in suspended solids and 9.49, 119.44 and 7.13 ng g?1 dry weight in surface sediments, respectively. The concentrations of NP and OP were higher in summer than in winter in the suspended solids and surface sediments, while the reverse was true in surface waters. Similarly, the levels of BPA were lower in summer than in winter in surface sediments, while the opposite was true in surface waters and suspended solids. These seasonal variations might be attributed to temperature and stream flows. High levels of OP, NP and BPA were found in surrounding river intersections, residential and industrial areas. Their concentrations decreased gradually with increasing distance from those areas, while the lowest levels were measured in near less urbanized and agricultural areas. These phenomena might indicate that the stream current and pollutant source were the major factors that affect the spatial distributions of OP, NP and BPA in the three rivers. Ecological risk assessment indicated that NP was the only one of the three pollutants with the potential to influence local aquatic organisms. The results of this study provide scientific support for control of these pollutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号