首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
A study was conducted to evaluate the water quality of Jaipur City. Groundwater samples from hand pumps and tube wells of eleven sampling stations were analyzed during monsoon session with the help of standard methods of APHA. The analytical results shows higher concentration of total dissolved solids, electrical conductivity, total hardness and nitrate, which indicate signs of deterioration but values of pH, calcium, magnesium, sulphate and fluoride are within permissible limit as per WHO standards. From the Hill-Piper trilinear diagram, it is observed that the majority of ground water from sampling stations are calcium-magnesium-chloride-sulphate type water. The values of sodium absorption ratio and electrical conductivity of the ground water were plotted in the US salinity laboratory diagram for irrigation water. Most of the samples fall in C3S1 quality with high salinity hazard and low sodium hazard. Chemical analysis of groundwater shows that mean concentration of cation (in meq/l) is in order magnesium > sodium > calcium > potassium while for the anion (in meq/l) it is chloride > bicarbonate > sulphate > nitrate > carbonate > fluoride.  相似文献   

2.
Two hundred sample sites were selected systematically and samples were taken for a baseline study to understand the geochemistry of the groundwater and to assess the overall physicochemical characteristics. Sampling was carried out using pre-cleaned polyethylene containers. The physical and chemical parameters of the analytical results of groundwater were compared with the standard guideline values recommended by the World Health Organization for drinking and public health standards. Thematic maps pertaining to TDS, EC, Cl, NO3, SO4, and Na were generated using Arc View 3.1 platform. Results showed that most of the locations are contaminated by higher concentration of EC, TDS, K?+?, and NO $_{3}^{\;-}$ . Major hydro-chemical facies were identified using Piper trilinear diagram. Based on US salinity diagram, most of the samples fall in the field of C3-S1 indicating high salinity and low sodium water, which can be used for almost all types of soil with little danger of exchangeable sodium. Majority of the samples are not suitable for domestic purposes and far from drinking water standards. However, PI values indicate that groundwater is suitable for irrigation.  相似文献   

3.
Groundwater is almost globally important for human consumption as well as for the support of habitat and for maintaining the quality of base flow to rivers, while its quality assessment is essential to ensure sustainable safe use of the resources for drinking, agricultural, and industrial purposes. In the current study, 50 groundwater samples were collected from parts of Palar river basin to assess water quality and investigate hydrochemical nature by analyzing the major cations (Ca, Mg, Na, K) and anions (HCO(3), Cl, F,SO(4), NO(3), PO(4),CO(3), HCO(3), and F) besides some physical and chemical parameters (pH, electrical conductivity, alkalinity, and total hardness). Also, geographic information system-based groundwater quality mapping in the form of visually communicating contour maps was developed using ArcGIS-9.2 to delineate spatial variation in physicochemical characteristics of groundwater samples. Wilcox classification and US Salinity Laboratory hazard diagram suggests that 52% of the groundwater fall in the field of C2-S1, indicating water of medium salinity and low sodium, which can be used for irrigation in almost all types of soil with little danger of exchangeable sodium. Remaining 48% is falling under C1-SI, indicating water of low salinity and low sodium.  相似文献   

4.
In order to assess the quality and suitability of waters in the Kor-Sivand river basin, 60 water samples from the Kor river and 90 water samples from wells in the basin were studied. Assessments were based on Piper's and Gibbs' diagrams for water quality, Food and Agricultural Organization's (FAO) guidelines, and US Salinity Laboratory diagram for water suitability. The results showed that the river water is of Ca-HCO(3) type, while well water is of Ca-Cl and Na-Cl type. Based on Gibbs' diagram, the source of soluble ions in the river water samples is the weathering of stones over which water flows, while evaporation was found to be the dominant process in the ion concentration of the well samples. According to the FAO Guidelines, the salinity of surface water for irrigation did not cause great restrictions; however, many of these waters could create potential permeability problems. In the groundwater samples, a high salt concentration is more important than the infiltration problem. Mg hazard values at some sites limit its use for agricultural purposes. One third of the river water samples and two thirds of well waters had more than 50% magnesium. Saturation indices showed that 94% of the analyzed water samples are supersaturated with calcite, aragonite, and dolomite. Based on the US Salinity Laboratory diagram, river water samples were classified as C(2)S(1) and C(3)S(1), while C(4)S(3), C(4)S(4), C(2)S(1), and C(3)S(1) were the most dominant classes in well samples. Some management practices necessary for sustainable development of water resources in the study area were discussed briefly, including appropriate selection of crops, adequate drainage, leaching, blending and cyclic use of saline water, proper irrigation method, and addition of soil amendment.  相似文献   

5.
Quality assessment of water is essential to ensure sustainable safe use of it for drinking, agricultural, and industrial purposes. For the same purpose the study was conducted for the samples of water of Sambhar lake city and its adjoining areas. The standard methods of APHA were used to analysis 15 samples collected from hand pumps and tube wells of the specified area. The analytical results show higher concentration of total dissolved solids, electrical conductivity sodium, nitrate, sulfate, and fluoride, which indicate signs of deterioration but values of pH, calcium, magnesium, total hardness, and carbonate are within permissible limits as per WHO standards. From the Hill-piper trilinear diagram, it is observed that the majority of groundwater from sampling stations are sodium?Cpotassium?Cchloride?Csulfate type water. The values of sodium absorption ratio and electrical conductivity of the groundwater were plotted in the US salinity laboratory diagram for irrigation water. Only the one sample fall in C3S1 quality with high salinity hazard and low sodium hazard. Other samples fall in high salinity hazard and high sodium hazard. Chemical analysis of groundwater shows that mean concentration of cation is in order sodium > magnesium > calcium > potassium while for the anion it is chloride > bicarbonate > nitrate > sulfate.  相似文献   

6.
Groundwater quality assessment has been carried out based on physicochemical parameters (pH, EC, TDS, CO(3), HCO(3), Cl, SO(4), PO(4), NO(2), Ca(+2), Mg(+2), Na(+) and K(+)) and metal concentration in the Rameswaram Island from 25 bore wells. The Langelier Saturation Index of the groundwater shows positive values (63% samples) with a tendency to deposit the CaCO(3) in the majority of water samples. Scatter plot (Ca + Mg/HCO(3)) suggests carbonate weathering process, which is the main contributor of Ca(2+), Mg(2+) and HCO(3) ions to the water. Gibbs diagram suggests rock-water interaction dominance and evaporation dominance which are responsible for the change in the quality of water in the study area. NaCl and mixed CaNaHCO(3) facies are two main hydrogeochemical facies of groundwater. Mathematical calculations and graphical plots of geochemical data reveal that the groundwater of Rameswaram Island is influenced by natural weathering of rocks, anthropogenic activities and seawater intrusion due to over exploitation. Weathering and dissolution of carbonate and gypsum minerals also control the concentration of major ions (Ca(+2), Mg(+2), Na(+) and K(+)) in the groundwater. The nutrient concentration of groundwater is controlled to a large extent by the fertilizers used in agricultural lands and aquaforms. Comparison of geochemical data shows that majority of the groundwater samples are suitable for drinking water and irrigation purposes.  相似文献   

7.
Hydrochemical investigations of the groundwater and the seasonal effect on the chemical budget of ions along the course of the polluted river Adyar were carried out. From the geochemical results, it has been found that the seasonal effect does not change the order of abundance of both cations and anions, but it does change the concentration of various ions present in the groundwater. Among the chemical budget of ions, sodium and chloride were found to be the most predominant ions. The nitrate concentration in the groundwater ranges from 4.21 to 45.93 mg/l in pre-monsoon and in post-monsoon it ranges from 1.02 to 75.91 mg/l. The nitrate concentrations in the post-monsoon are high in some places especially in the upper stretch of the river. The intense agricultural activities near the upper stretch of the river may be an important factor for the higher concentration of nitrates in these aquifers. In order to determine the geochemical nature of water, the data was interpreted using the piper diagram wherein the results show the predominance of NaCl and CaMgCl types. Equiline diagrams, 1:1, were applied to evaluate the affinity ion relationship between various ions present in these waters. The quality of the groundwater was assessed with regard to its suitability to drinking and irrigation. A comparison of the groundwater quality in relation to drinking water quality standards shows that most of the water samples are not suitable for drinking, especially in post-monsoon period. US Salinity Laboratory's, Wilcox's diagrams, Kellys ratio and magnesium ratio were used for evaluating the water quality for irrigation which suggest that the majority of the groundwater samples are not good for irrigation in post-monsoon compared to that in pre-monsoon. Moreover the source of the ions in the water was examined and classified accordingly using Gibb's diagram. The analytical results reveals that the TDS values of the pre-monsoon samples were found to be lower than the post-monsoon reflecting that leaching predominates over that of the dilution factor.  相似文献   

8.
The study comprised suitability assessment of groundwater for drinking, irrigation, and industrial use. A total of 34 groundwater samples were collected from Rewari town and its perimeter from the land chiefly used for agriculture. Physico-chemical characterization of the samples revealed that groundwater from most of the sources was not fit for drinking owing to a high concentration of calcium, magnesium, hardness and fluoride. Suitability for irrigation, too, was low since most of the sources had high value of sodium adsorption ratio (SAR), residual sodium carbonate (RSC), soluble sodium percentage (SSP) and magnesium hazard which can render salinity and alkali hazard to soils on long term use in irrigation. No source of water was found to be suitable for industrial application since it had high concentration of calcium carbonate which can precipitate very easily. It was observed that sodium, sulphate, and chloride were the chief ions present in water and based on the abundance of ions and their correlation type, most of the groundwater samples are of sodium sulphate and/or sodium chloride type. The high concentration of the chemical constituents is attributed to the lithologic composition of the area. It was observed that the water of deep meteoric percolation type was of sodium sulphate type and the shallow of sodium chloride type.  相似文献   

9.
The hydrogeochemical parameters for groundwater samples of the Varanasi area, a fast-urbanizing region in India, were studied to evaluate the major ion chemistry, weathering and solute acquisition processes controlling water composition, and suitability of water quality for domestic and irrigation uses. Sixty-eight groundwater samples were collected randomly from dug wells and hand pumps in the urban Varanasi area and analyzed for various chemical parameters. Geologically, the study area comprises Quaternary alluvium made up of an alternating succession of clay, silty clay, and sand deposits. The Total dissolved solids classification reveals that except two locations, the groundwater samples are desirable for drinking, and all are useful for irrigation purposes. The cationic and anionic concentrations indicated that the majority of the groundwater samples belong to the order of Na > Ca > Mg > K and HCO3 > Cl > SO4 types, respectively. Geochemical classification of groundwater based on the Chadha rectangular diagram shows that the majority (81%) of groundwater samples belong to the calcium?Cbicarbonate type. The HCO3/ (HCO3 + SO4) ratio (0.87) indicates mostly carbonic acid weathering process due to presence of kankar carbonate mixed with clay/fine sand. The high nitrate concentration (>45?mg/l) of about 18% of the groundwater samples may be due to the local domestic sewage, leakage of septic tanks, and improper management of sanitary landfills. In general, the calculated values of sodium adsorption ratio, percent sodium, residual sodium carbonate, and permeability index indicate good to permissible use of water for irrigation, and only a few locations demand remedial measures for better crop yields.  相似文献   

10.
This study was carried out to investigate possible seawater intrusion into groundwater along the coastal lines of the Bafra Plain and salinity–alkalinity problems over land areas irrigated with water exposed to seawater intrusion were evaluated. For this purpose, 32 groundwater wells were selected over the plain, water samples were taken from these wells between October 2007 and September 2008, and chemical analyses were performed over these samples. Soil samples were taken from the fields irrigated with this water at 32 different locations at the end of the irrigation season in September 2008 from 0–30, 30–60, 60–90, and 90–120 cm soil depths and textures. EC, pH, Na, Ca, Mg, and K analyses were performed over these samples. Excessive seawater intrusion was observed in some parts of the plain and impacts of seawater intrusion decreased with the distance from the coastal line. It was determined that groundwater quality was significantly affected from seawater intrusion. Salinity and especially alkalinity problems were observed in land areas irrigated with this water and alkalinity increased with the rate of intrusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号