首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 624 毫秒
1.
Surface ozone concentrations in Xi'an, China were monitored from March 23, 2008 to January 12, 2009 using the Model ML/EC9810 ozone analyzer. The daily average O(3) ranged from <1 ppb to 64.2 ppbv with an annual average of 16.0 ppbv. The seasonal average of O(3) in summer (32.5 ppbv) was more than 10 times higher than that in winter (3.0 ppbv). A significant positive correlation was found between ozone concentration and ambient temperature, indicating that the intensity of solar radiation was one of the several major factors controlling surface ozone production. Using the NOAA HYSPLIT 4 trajectory model, the three longest O(3) pollution episodes were found to be associated with the high biogenic volatile organic carbon (BVOC) emissions from the vegetation of Qinling Mountains. No significant weekday and weekend difference in O(3) levels was detected due to the non-significant change in NO(x) emissions. O(3) depletion by NO emission directly emitted from vehicles, low oxygenated VOC concentrations, and low-level solar radiation caused by high aerosol loading all contributed to the low levels of O(3) found in Xi'an compared to other cities and rural areas.  相似文献   

2.
Increase in concentrations of tropospheric ozone (O(3)) is one of the main factors affecting world agriculture production. Tropical countries including India are at greater risk due to their meteorological conditions (high solar radiation and temperature) being conducive to the formation of O(3). The most effective anti-ozonant chemical is N-[2-(2-oxo-1-imidazolidinyl) ethyl]-N-phenylurea or ethylene diurea (EDU). Due to its specific characteristics, EDU has been used in the field as a phytomonitoring agent to assess crop losses due to O(3). Field experiments were conducted on five local cultivars of wheat (Triticum aestivum L. cv HUW234, HUW468, HUW510, PBW343, and Sonalika) grown under natural field conditions in a suburban area of Varanasi, Uttar Pradesh, India during December 2006 to March 2007 to determine the impact of O(3) on their growth and yield characteristics. Mean monthly O(3) concentrations varied between 35.3 ppb and 54.2 ppb at the experimental site. EDU treatment positively affected various growth and yield parameters with difference between cultivars. EDU-treated plants showed increase in shoot and root length, leaf area, absolute growth rate, relative growth rate, and net primary productivity, indicating O(3) induced suppression in growth. EDU treatment was highly significant in different cultivars for total biomass and test weight but not for harvest index. Yield per plant was higher by 25.6%, 24%, 20.4%, 8.6%, and 1.9% in EDU-treated cultivars HUW468, Sonalika, HUW510, HUW234, and PBW343, respectively, than non-EDU-treated ones. These results clearly indicate the sensitivity of all the wheat cultivars to ambient levels of O(3) with cv HUW468 appearing to be most sensitive. The present study also supports the view that EDU has great potential in alleviating the unfavorable effects of O(3) and can be effectively used as a monitoring tool to assess growth and yield losses in areas experiencing elevated concentrations of O(3).  相似文献   

3.
Field experiments were conducted in open top chamber during rabi seasons of 2009–10 and 2010–11 at the research farm of the Indian Agricultural Research Institute, New Delhi to study the effect of tropospheric ozone (O3) and carbon dioxide (CO2) interaction on yield and nutritional quality of Indian mustard (Brassica juncea (L.) Czern.). Mustard plants were grown from emergence to maturity under different treatments: charcoal-filtered air (CF, 80–85 % less O3 than ambient O3 and ambient CO2), nonfiltered air (NF, 5–10 % less O3 than ambient O3 and ambient CO2 ), nonfiltered air with elevated carbon dioxide (NF?+?CO2, NF air and 550?±?50 ppm CO2), elevated ozone (EO, NF air and 25–35 ppb elevated O3), elevated ozone along with elevated carbon dioxide (EO?+?CO2, NF air, 25–35 ppb O3 and 550?±?50 ppm CO2), and ambient chamber less control (AC, ambient O3 and CO2). Elevated O3 exposure led to reduced photosynthesis and leaf area index resulting in decreased seed yield of mustard. Elevated ozone significantly decreased the oil and micronutrient content in mustard. Thirteen to 17 ppm hour O3 exposure (accumulated over threshold of 40 ppm, AOT 40) reduced the oil content by 18–20 %. Elevated CO2 (500?±?50 ppm) along with EO was able to counter the decline in oil content in the seed, and it increased by 11 to 13 % over EO alone. Elevated CO2, however, decreased protein, calcium, zinc, iron, magnesium, and sulfur content in seed as compared to the nonfiltered control, whereas removal of O3 from air in the charcoal-filtered treatment resulted in a significant increase in the same.  相似文献   

4.
In the Romanian forest ecosystems, the first measurements of ambient ozone (O(3)) concentrations started in 1997 in 6 of 26 locations established in a trans-Carpathian Network. Furthermore, three additional ozone and other phytotoxic pollutant (NO(x), SO(2) and NH(3)) monitoring networks were installed in 2000 in Retezat (11 locations) and during 2006-2009 in Bucegi-Piatra Craiului (22 locations) LTER Sites. Since 2007, in four Intensive Forest Monitoring plots (level II), measurements of ozone concentrations were developed. Measurements were made using the Ogawa? passive sampler system during the growing season (April to October). In the Bucegi LTER Site, the seasonal means of 42.5-47.2 ppb in 2006 and 2008 were higher than those determined in the Carpathian Network in the 1997-1999 period (39.0-42.0 ppb), while the 2009 mean of 40.0 ppb was in the range of these values. The O(3) levels were slightly higher than those measured in Retezat LTER Site. In the Intensive Forest Monitoring Network (level II), no significant differences in ozone concentrations between individual core plots were noticed. The seasonal means for each plot range between 36.8 and 49.8 ppb in 2008. An influence of ozone concentrations on crown condition and tree volume growth was not determined.  相似文献   

5.
The present study showed a possibility to use phenotypic and proteomic responses in rice plants as an in vivo biomarker to detect higher concentrations of ambient ozone (O3). The investigation was done on two cultivars of Indian rice using open top chambers ventilated with charcoal filtered air, ambient air, ambient air with 10 ppb O3 exposure and ambient air with 20 ppb O3 exposure at a rural site of Varanasi, India. Results showed that the magnitude of O3 induced specific type of foliar injury directly depends on the duration and concentration of O3 exposure. Even the internal protein profile of injured and normal leaf demonstrated a differential expression, which directly indicates towards the molecular basis of plant’s response against O3.  相似文献   

6.
Temporal variations of the ambient mixing ratio of greenhouse gas (CH(4) and N(2)O) in a riparian rice-based agro-ecosystem of tropical region were studied during 2005-2006 in coastal Odisha. The endeavour was made with the hypothesis that the ambient mixing ratio of CH(4) and N(2)O depends on the changes in the flux of CH(4) and N(2)O from the rice fields in the riparian rice ecosystems. A higher ambient mixing ratio of CH(4) was recorded during the tillering to grain filling stages of the rice crop, during both dry and wet seasons. The higher ambient mixing ratio of CH(4) during the wet season may attribute to the higher CH(4) emission from the rice field. The average mixing ratio of CH(4) was recorded as 1.84 ± 0.05 ppmv and 1.85 ± 0.06 ppmv during 2005 and 2006, respectively. The ambient CH(4) mixing ratio was recorded negatively correlated with the average ambient temperature. The N(2)O mixing ratio ranged from 261.57 to 399.44 ppbv with an average of 330.57 ppbv during 2005. However, the average mixing ratio of N(2)O was recorded as 318.83 ± 20.00 ppbv during 2006. The N(2)O mixing ratio was recorded to be negatively correlated with rainfall and average ambient temperature. Significant negative correlation (r = -0.209) of N(2)O with sunshine hours may attribute to the photochemical break down of N(2)O. The temporal variation of N(2)O flux from the rice field does not affect the ambient mixing ratio of N(2)O in the same way as in the case of the ambient mixing ratio of CH(4). However, the higher mixing ratio of N(2)O during the fallow period of the post monsoon period may attribute to the N(2)O flux from soil. Results indicate that intensively cultivated coastal ecosystems can be a major source of ambient greenhouse gas.  相似文献   

7.
Ozone biomonitoring is a detection and monitoring techniquethat involves documenting ozone-induced visible injury toknown ozone-sensitive species under conditions of ambientexposure. The USDA Forest Service administers a long-term,nationwide ozone biomonitoring program to address public andscientific concerns about ozone impacts on forest health. Asystematic grid is used as the basis for biomonitoring sitelocations. At each site, trained field crews evaluate amaximum of thirty plants of up to six species and record the amount and severity of leaf-injury on individualplants. Injury from ozone was found more often on biomonitoring sites in the eastern Unites States than in theinterior or west-coast areas. Further results from thenortheast reveal that in any year, there is a higherpercentage of ozone-injured plants with more severe symptomsin areas with relatively high ozone concentrations than inareas with relatively low ozone. In very dry years (e.g.,1999) the percentage of injured plants and injury severityestimates are both sharply reduced even though ambient ozoneexposures are high. These findings demonstrate thatbiomonitoring data provide meaningful evidence of when highozone concentrations during the growing season have biologicalsignificance. Any assessment of ozone stress in the forestenvironment must include both biomonitoring (i.e., plantresponse) and air quality data to be complete.  相似文献   

8.
Long-term fluxes of ozone (O(3)) were measured over a mixed temperate forest using the aerodynamic gradient method. The long-term average O(3) flux (F) was -366 ng m(-2) s(-1) for the period 2000-2010, corresponding to an average O(3) concentration of 48 μg m(-3) and a deposition velocity v(d) of 9 mm s(-1). Average nocturnal ozone deposition amounted to -190 ng m(-2) s(-1), which was about one third of the daytime flux. Also during the winter period substantial O(3) deposition was measured. In addition, total O(3) fluxes were found to differ significantly among canopy wetness categories. During the day, highest deposition fluxes were generally measured for a dry canopy, whereas a rain-wetted canopy constituted the best sink at night. Flux partitioning calculations revealed that the stomatal flux (F(s)) contributed 20% to the total F but the F(s)/F fraction was subject to seasonal and diurnal changes. The annual concentration-based index AOT40 (accumulated dose over a threshold of 40 ppb) and the Phytotoxic Ozone Dose (POD(1) or accumulated stomatal flux above a threshold of 1 nmol m(-2) s(-1)) were related in a curvilinear way. The O(3) deposition was found to be largely controlled by non-stomatal sinks, whose strength was enhanced by high friction velocities (u(*)), optimizing the mechanical mixing of O(3) into the canopy and the trunk space. The long-term geometrical mean of the non-stomatal resistance (R(ns)) was 136 s m(-1) but lower R(ns) values were encountered during the winter half-year due to higher u(*). The R(ns) was also subject to a marked diurnal variability, with low R(ns) in the morning hours, when turbulence took off. We speculate that non-stomatal deposition was largely driven by scavenging of ozone by biogenic volatile organic compounds (BVOCs) and especially NO emitted from the crown or the forest floor.  相似文献   

9.
In Argentina no historical or present programs exist specifically assessing ecosystem health with respect to photochemical air pollution, although phytotoxic concentrations of near-ground ozone have been documented in recent years. Here we report our preliminary findings on field observations of ozone-like injury found in natural plant populations and agroecosystems late in the 2005 growing season in the Southern Hemisphere. Several possible ozone bioinidicator plants which have not been previously documented were observed to exhibit foliar symptoms consistent with ozone-induced injury. Based on these results we intend to expand field surveys and complete the screening process for injury confirmation of the plant species described here. For this and future research we will be using controlled chamber studies based in the US. Continuous monitoring of tropospheric ozone does not currently take place in the region of central Argentina. The combined evidence provided by intermittent air quality sampling and the presence of ozone-like injury to vegetation indicates the need to establish air quality and ozone biomonitoring networks in this region.  相似文献   

10.
The US Forest Service administers a long-term, nationwide ozone biomonitoring program in partnership with other state and federal agencies to address national concerns about ozone impacts on forest health. Biomonitoring surveys begun in 1994 in the East and 1998 in the West provide important regional information on ozone air quality and a field-based record of ozone injury unavailable from any other data source. Surveys in the Northeast and North Central subregions cover 450 field sites in 24 states where ozone-sensitive plants are evaluated for ozone-induced foliar injury every year. Sites are typically large, undisturbed openings (>3 acres in size) close to forested areas where >3 bioindicator species are available for evaluation. Over the 16-year sampling period, injury indices have fluctuated annually in response to seasonal ozone concentrations and site moisture conditions. Sites with and without injury occur at all ozone exposures but when ambient concentrations are relatively low, the percentage of uninjured sites is much greater than the percentage of injured sites; and regardless of ozone exposure, when drought conditions prevail, the percentage of uninjured sites is much greater than the percentage of injured sites. Results indicate a declining trend in foliar injury especially after 2002 when peak ozone concentrations declined across the entire region.  相似文献   

11.
Spatiotemporal characteristics and impact of ambient air-quality attributed to open burning of rice straw were analyzed and estimated with measured data. Two multivariate analytic methods, factor analysis and cluster analysis, were adopted to analyze the temporal and spatial impact on ambient air-quality during the rice straw burning episode. Temporal features of three scenarios were cited to compare the concentrations for ambient air-quality between the rice straw burning episode and non-episodes over two typical stations by factor analysis. Factor analysis demonstrated that the first rotational component, identified as being highly correlated to the open burning of rice straw, accounts for about 40% of the concentration variance for ambient air-quality. In typical air-quality stations, the average hourly incremental concentrations between the episode and non-episodes were greater than 300 μg m(-3) for PM(10), 1.0 ppm for CO and 35 ppb for NO(2) during the impact of rice straw burning. Factor analysis presented that the first rotated component was highly correlated with several primary pollutants (NO(2), NMHC, PM(10) and CO) during the rice straw burning episode, while every component was only highly correlated with a unique air pollutant during non-episodes. The delineation isopleths indicated that factor analysis could serve as a better method than cluster analysis and provides cross-county cooperation for local governments located in the same separated district during the rice straw burning season. The results of factor analysis revealed that CO is the best index to demonstrate the impact of rice straw burning than the other six air pollutants measured during the episode. Backward trajectory analysis supplied a cause-effect relationship between measured stations and specific rice planted regions during the rice straw burning episode.  相似文献   

12.
Passive samplers are often employed to measure ozone concentrations in remote areas such as mountain forests. The potential ozone risk for vegetation is then assessed by calculating the AOT40 exposure index (accumulated hourly ozone concentration exceedances above 40 ppb, i.e. AOT40 = Σ([O(3)] - 40)Δt for any hourly ozone concentration [O(3)] > 40 ppb). AOT40 is customary calculated on the basis of ozone concentrations expressed as a volumetric mixing ratio, while lab sheets normally report ozone concentrations from passive samplers in mass units per cubic metre. Concentrations are usually converted from mass units to ppb using a standard conversion factor taking SATP (Standard Ambient Temperature and Pressure) conditions into account. These conditions, however, can vary considerably with elevation. As a consequence, the blanket application of a standard conversion factor may lead to substantial errors in reporting and mapping ozone concentrations and therefore in assessing potential ozone risk in mountain regions. In this paper we carry out a sensitivity analysis of the effects of uncertainties in estimations of air temperature (T) and atmospheric pressure (P) on the concentration conversion factor, and present two examples from two monitoring and mapping exercises carried out in the Italian Alps. We derived P and T at each site from adiabatic lapse rates for temperature and pressure and analysed the magnitude of error in concentration estimations. Results show that the concentration conversion is much more sensitive to uncertainties in P gradient estimation than to air temperature errors. The concentration conversion factor (cf) deviates 5% from the standard transformation at an elevation of 500 m asl. As a consequence, the standard estimated AOT40 at this elevation is about 13% less than the actual value. AOT40 was found to be underestimated by an average between 25% and 34% at typical elevations of mountain forest stands in the Italian Alps when a correct conversion factor for transforming ozone concentrations from μg m(-3) to ppb is not applied.  相似文献   

13.
Hourly concentrations of ozone (O(3)), 55 volatile organic compounds (VOCs, ozone precursors) and nitrogen oxides (NOx) were measured at an upwind urban site, a downwind suburban site, and a rural site in central Taiwan, from January 2003 to December 2006. VOC and NOx mean concentrations showed a gradient from high to low across the urban (56 ppb and 34 ppb), suburban (38 ppb and 27 ppb) and rural sites (25 ppb and 21 ppb) but a reverse gradient in ozone across these sites (24, 27, and 29 ppb, respectively). Although there was about twice the difference in VOC concentrations between the urban and rural sites, nearly 65% ozone formation potential was contributed to by the same 9 VOCs. Seasonal patterns showed peak ozone levels in autumn and minima in summer at the urban site, but minima in winter at the downwind suburban and rural sites. Ozone precursor levels, on the other hand, were lowest in summer and highest in winter. The diurnal pattern showed that ozone levels peaked one hour later at the rural site than at the urban site. The ethylbenzene to m,p-xylene ratio, an indicator of the age of the air mass, increased from 0.4 at the urban site to 0.6 at the suburban site and 0.8 at the rural site during daily peak ozone times. This finding suggests the transport of ozone and precursors from upwind to downwind producing elevated ozone levels in the suburban and rural areas. Ozone episodes occurred mostly in days with a mean midday UV index of 6.5 (1 UV index=100 J m(-2)) and wind speed at 1.3 m s(-1) at all three sites.  相似文献   

14.
Rising O(3) concentrations in agricultural areas have been identified as a significant threat to crop production in Asia including India. The present work reports the results of a field study conducted to assess the usefulness of higher than recommended NPK dose in modifying the physiological, growth, yield, and seed quality responses of two mustard (Brassica campestris L. var. Vardan and Aashirwad) varieties under ambient ozone level at a rural site of India, using open-top chambers. Twelve hourly mean O(3) concentrations ranged between 27.7 and 59.04 ppb during the growth period. Plants in nonfiltered chambers (NFCs) showed reductions in photosynthetic rate, stomatal conductance, and growth parameters compared to the plants in filtered chambers (FCs), but reductions were of lower magnitude at 1.5 times recommended dose of NPK (1.5 RNPK) compared to recommended (RNPK). Yield and seed quality reduced significantly in plants of NFCs compared to FCs at RNPK, but no significant differences were recorded at 1.5 RNPK. There were higher N uptake and N uptake efficiency of plants in FCs compared to NFCs. Nitrogen utilization efficiency increased in Vardan, but decreased in Aashirwad in NFCs compared to FCs suggesting higher capability of N acquisition and utilization under ambient O(3), which led to a less pronounced reduction in the yield of the former than the latter variety. The differential nitrogen utilization efficiency in these varieties may be potentially used as measure of sensitivity characteristics in breeding programs for yield improvement in mustard under the present trend of increase in O(3) concentrations.  相似文献   

15.
An ambient air study was conducted inthe city of Florence, Italy, in the summer 1996.Tropospheric ozone was continuously monitored withautomatic analyzers in three stations, two located inthe urban area and one in the hilly surroundings(Settignano). A biomonitoring campaign based on thetobacco cv. Bel-W3 plants was performed in the samearea. The highest values were constantly recorded inthe Settignano station. The highest 1-hour meanrecorded was 197 nl/l; the accumulated exposure overa threshold of 40 nl/l (AOT40) was well above thecritical levels standards for protection of thevegetation. A consistent temporal variation wasobserved and July proved to be the month with thehighest ozone levels. Cumulative frequencydistribution of ozone maximum daily concentrationsexhibited a good fitting to log-normality. No`week-end effect was observed. Biomonitoring datawere in good agreement with chemico-physical ones.  相似文献   

16.
Air quality data from a network of 11 monitoring stations in the Apulia region of southern Italy during the summer of 2005 reveal a high frequency of ozone law limit violations. Since ozone is a secondary pollutant, air quality control strategies aimed at reducing ozone concentration are not immediate. Herein, we analyse weekly changes in concentration levels of ozone (O(3)), nitrogen oxides (NO(x)), carbon monoxide (CO), and volatile organic compounds (VOCs), and evaluate how the differences in primary emissions cause changes in the production of ozone. The comparison between weekend and weekday levels of O(3) and its precursors are direct evidence for the existence of the "ozone weekend effect." This effect was observed at all stations with a considerable variation in the overall ozone magnitude, including both traffic stations and non-traffic stations. Data from VOC measurements at traffic stations primarily indicated elevated levels of benzene, toluene, and xylenes (BTX); all of these substances showed an overall decrease over the weekend. A single station indicated levels of non-methane hydrocarbon (NMHC) and PM10, both of which did not demonstrate any weekly cycle. Analysis of weekly and diurnal cycles of O(3), NO(x), CO, NMHC, and PM10 indicates that higher weekend ozone levels result from a reduction in the emission of nitrogen oxides on weekends in VOC-sensitive regimes. This indicates that a reduction in VOC and NO(x) levels would be more effective than NO(x) reduction alone. Our results underscore the need for improved and more efficient VOC measurements.  相似文献   

17.
Tropospheric ozone occurs at phytotoxic levels in the northeastern and mid-Atlantic regions of the United States. Quantifying possible regional-scale impacts of ambient ozone onforest tree species is difficult and is confounded by other factors, such as moisture and light, which influence the uptake of ozone by plants. Biomonitoring provides an approach to document direct foliar injury irrespective of direct measure ofozone uptake. We used bioindicator and field plot data from theUSDA Forest Service to identify tree species likely to exhibit regional-scale ozone impacts. Approximately 24% of sampled sweetgum (Liquidambar styraciflua), 15% of sampled loblollypine (Pinus taeda), and 12% of sampled black cherry (Prunus serotina) trees were in the highest risk category. Sweetgum and loblolly pine trees were at risk on the coastal plain of Maryland, Virginia and Delaware. Black cherry trees were at riskon the Allegheny Plateau (Pennsylvania), in the Allegheny Mountains (Pennsylvania, West Virginia, and Maryland) as well ascoastal plain areas of Maryland and Virginia. Our findings indicate a need for more in-depth study of actual impacts on growth and reproduction of these three species.  相似文献   

18.
There is a considerable interest in quantifying near-surface ozone concentrations and associated trends, as they serve to define the impacts on ozone of the anthropogenic precursors reductions and to evaluate the effects of emission control strategies. A statistical test has been used to the ozone air concentrations measured in the French rural monitoring network stations, called MERA, in order to bring out spatio-temporal trends in air quality in France over the 1995-2003 period. The non-parametric Mann-Kendall test has been developed for detecting and estimating monotonic trends in the time series and applied in our study at annual values: mean, 98th percentile and median based on hourly averaged ozone concentrations and applied to daily maxima. In France, when averaged overall 9 stations between 1995 and 2003, a slight increasing trend of the O(3) levels (+0.6 +/- 1.3% year( - 1)) is observed, which is strongly influenced by the concentrations of the high altitude stations. In stations below 1000 m a mean rate of -0.48% year( - 1) from annual average concentrations, of -0.45% year( - 1) for medians and of +0.56% year( - 1) for P.98 over the 1995-2003 period were obtained. In stations above 1,000 m a mean rate of +1.75% year( - 1) from annual averages values, of +4.05% year( - 1) for medians and of +2.55% year( - 1) for P.98 were calculated over the 1997-2003 period. This situation is comparable to the one observed in other countries. In Europe and in France a reduction of precursor emissions is observed whereas a slight increasing trend of the O(3) levels is observed over the 1995-2003 period. One reason is the non-linearity of chemical ozone production with respect to precursor emissions. Possible explanations are an increase in near-surface ozone values caused by a reduced ozone titration by reduced NO( x ), the meteorological parameters change, an increase in bio-geogenic compound concentrations, the intercontinental transport from North America and Asia and the influence of stratospheric-tropospheric exchanges. These possible explanations must be interpreted carefully as on the short time scales considered.  相似文献   

19.
We conducted a multicity time-series study using monitoring data to assess seasonal patterns of short-term ozone–mortality association among elderly aged 65 years and over in Japan. Daily exposure to ambient ozone was computed using hourly measurements of photochemical oxidants available at multiple monitoring stations in each city. Effects of ozone on daily all-cause non-accidental, cardiovascular, and respiratory mortality were estimated using distributed lag linear models, controlling for confounding by temporal, day of the week, temperature, and flu epidemics. City-level effect estimates were combined using inverse variance meta-analysis. In spring and autumn, a 10-ppbv increase of daily maximum 8-h average ozone concentration in the previous 3 days was associated with 0.69 % (95 % confidence interval (CI): 0.27–1.10), 1.07 % (0.34–1.82), and 1.77 % (0.78–2.77) increases in daily all-cause, cardiovascular, and respiratory mortality, respectively. Forward displacement of respiratory mortality was large during the cold season despite lower ozone concentration. Results were generally independent of fine particulate matter and nitrogen dioxide. Findings suggest significant mortality effects of short-term ozone exposure among the elderly during the moderate season. Those with underlying respiratory diseases were susceptible, even during winter.  相似文献   

20.
In this study, variations of ambient ozone level are thoroughly analysed according to the monitored data in a mixed residential, commercial and industrial city, Tehran, based on considering the meteorological factors. Ozone as a pollutant shows typical annual, weekly and diurnal cycles. This analysis has shown that the ozone level concentrations were below the WHO guidelines in Tehran during 2000–2003. The relation between ozone level at two different stations (Aghdasieh and Fatemi) is found (r?=?0.51). The ozone level response to meteorological parameters is investigated. The results suggest that the ozone level is affected (positively or negatively) by meteorological conditions, e.g. relative humidity, solar radiation, air temperature, wind speed and wind direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号