首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wetland restoration efforts conducted in Louisiana under the Coastal Wetlands Planning, Protection and Restoration Act require monitoring the effectiveness of individual projects as well as monitoring the cumulative effects of all projects in restoring, creating, enhancing, and protecting the coastal landscape. The effectiveness of the traditional paired-reference monitoring approach in Louisiana has been limited because of difficulty in finding comparable reference sites. A multiple reference approach is proposed that uses aspects of hydrogeomorphic functional assessments and probabilistic sampling. This approach includes a suite of sites that encompass the range of ecological condition for each stratum, with projects placed on a continuum of conditions found for that stratum. Trajectories in reference sites through time are then compared with project trajectories through time. Plant community zonation complicated selection of indicators, strata, and sample size. The approach proposed could serve as a model for evaluating wetland ecosystems.  相似文献   

2.
A multi-level coastal wetland assessment strategy was applied to wetlands in the northern Gulf of Mexico (GOM) to evaluate the feasibility of this approach for a broad national scale wetland condition assessment (US Environmental Protection Agency’s National Wetlands Condition Assessment). Landscape-scale assessment indicators (tier 1) were developed and applied at the sub-watershed (12-digit hydrologic unit code (HUC)) level within the GOM coastal wetland sample frame with scores calculated using land-use maps and geographic information system. Rapid assessment protocols (tier 2), using a combination of data analysis and field work, evaluated metrics associated with landscape context, hydrology, physical structure, and biological structure. Intensive site monitoring (tier 3) included measures of soil chemistry and composition, water column and pore-water chemistry, and dominant macrophyte community composition and tissue chemistry. Relationships within and among assessment levels were evaluated using multivariate analyses with few significant correlations found. More detailed measures of hydrology, soils, and macrophyte species composition from sites across a known condition gradient, in conjunction with validation of standardized rapid assessment method, may be necessary to fully characterize coastal wetlands across the region.  相似文献   

3.
Assessment Of A Natural Wetland For Use In Wastewater Remediation   总被引:1,自引:0,他引:1  
An environmental study was conducted to assess various aspects of the water and sediment quality of a natural wetland to determine its feasibility for advanced wastewater treatment in Louisiana. Nitrate (NO3), nitrite (NO2), ammonia (NH4), total Kjeldahl nitrogen (TKN), total phosphorus, chloride, total organic carbon, pH, trace metals, fecal coliform, dissolved oxygen (DO), and biochemical oxygen demand (BOD) were monitored. Productivity of a dominant shrub, Iva frutescens, in the wetland was also assessed. Research results indicated that gradients of chloride and salinity concentrations showed a broad mixing of the discharged fresh water into the more saline natural brackish waters. This provided an ideal pattern for nutrient assimilation by the receiving marsh. NH4 was reduced in the range of 50–100% when all combinations of sources and outflows were considered. For total phosphorus and TKN, reduction ranged from 0–95.1% and 11.2–89.7%, respectively. Some nutrient concentrations in the effluent outlet, NO3 in particular, were lower than background concentrations found in the reference wetland. Sediment and water showed no significant deficiency or toxicity problems for the major nutrients and metals analyzed. The secondary effluent discharges had little demonstrable negative impact on the wetland during the study period from 1995 to 1996.  相似文献   

4.
The Environmental Protection Agency (EPA) and U.S. Geological Survey (USGS) initiated a two-year regional pilot survey in 2007 to develop, test, and validate tools and approaches to assess the condition of northern Gulf of Mexico (GOM) coastal wetlands. Sampling sites were selected from estuarine and palustrine wetland areas with herbaceous, forested, and shrub/scrub habitats delineated by the US Fish and Wildlife Service National Wetlands Inventory Status and Trends (NWI S&T) program and contained within northern GOM coastal watersheds. A multi-level, stepwise, iterative survey approach is being applied to multiple wetland classes at 100 probabilistically-selected coastal wetlands sites. Tier 1 provides information at the landscape scale about habitat inventory, land use, and environmental stressors associated with the watershed in which each wetland site is located. Tier 2, a rapid assessment conducted through a combination of office and field work, is based on best professional judgment and on-site evidence. Tier 3, an intensive site assessment, involves on-site collection of vegetation, water, and sediment samples to establish an integrated understanding of current wetland condition and validate methods and findings from Tiers 1 and 2. The results from this survey, along with other similar regional pilots from the Mid-Atlantic, West Coast, and Great Lakes Regions will contribute to a design and implementation approach for the National Wetlands Condition Assessment to be conducted by EPA’s Office of Water in 2011.  相似文献   

5.
Various measures of plants, soils, and invertebrates were described for a reference set of tidal coastal wetlands in Southern New England in order to provide a framework for assessing the condition of other similar wetlands in the region. The condition of the ten coastal wetlands with similar hydrology and geomorphology were ranked from least altered to highly altered using a combination of statistical methods and best professional judgment. Variables of plants, soils, and invertebrates were examined separately using principal component analysis to reduce the multidimensional variables to principal component scores. The first principal component scores of each set of variables (i.e., plants, soil, invertebrates) significantly (p?<?0.05) correlated with both residential land use and watershed nitrogen (N) loads. Using cumulative frequency diagrams, the first principal component scores of each plant, soil, and invertebrate data set were plotted, and natural breaks and best professional judgment were used to rank the first principal component scores among the sites. We weighted all three ranked components equally and calculated an overall salt marsh condition index by summing the three ranks and then transforming the index to a 0–1 scale. The overall salt marsh condition index for the reference coastal wetland set significantly correlated with the residential land use (R?=???0.87, p?=?0.001) and watershed N loads (R?=???0.86, p?=?0.001). Overall, condition deteriorated in salt marshes and their associated discharge streams when subjected to increasing watershed residential land use and N loads.  相似文献   

6.
In the Mediterranean Region, habitat loss and fragmentation severely affect coastal wetlands, due to the rapid expansion of anthropogenic activities that has occurred in the last decades. Landscape metrics are commonly used to define landscape patterns and to evaluate fragmentation processes. This investigation focuses on the performance of a set of landscape pattern indices within landscapes characterized by coastal environments and extent below 1,000 ha. The aim is to assess the degree of habitat fragmentation for the monitoring of protected areas and to learn whether values of landscape metrics can characterize fine-resolution landscape patterns. The study areas are three coastal wetlands belonging to the Natura 2000 network and sited on the Adriatic side of Apulia (Southern Italy). The Habitat Maps were derived from the Vegetation Maps generated integrating phytosociological relevés and Earth Observation data. In the three sites, a total of 16 habitat types were detected. A selected set of landscape metrics was applied in order to investigate their performance in assessing fragmentation and spatial patterns of habitats. The final results showed that the most significant landscape patterns are related to highly specialized habitat types closely linked to coastal environments. In interpreting the landscape patterns of these highly specialized habitats, some specific ecological factors were taken into account. The shape indices were the most useful in assessing the degree of fragmentation of habitat types that usually have elongated morphology along the shoreline or the coastal lagoons. In all the cases, to be meaningful, data obtained from the application of the selected indices were jointly assessed, especially at the class level.  相似文献   

7.
Coastal and estuarine areas are often polluted by heavy metals that result from industrial production and agricultural activities. In this study, we investigated the concentration trait and vertical pattern of trace elements, such as As, Cd, Ni, Zn, Pb, Cu, and Cr, and the relationship between those trace elements and the soil properties in coastal wetlands using 28 profiles that were surveyed across the Diaokouhe Nature Reserve (DKHNR). The goal of this study is to investigate profile distribution characteristics of heavy metals in different wetland types and their variations with the soil depth to assess heavy metal pollution using pollution indices and to identify the pollution sources using multivariate analysis and sediment quality guidelines. Principal component analysis, cluster analysis, and pollution level indices were applied to evaluate the contamination conditions due to wetland degradation. The findings indicated that the concentration of trace elements decreased with the soil depth, while Cd increases with soil depth. The As concentrations in reed swamps and Suaeda heteroptera surface layers were slightly higher than those in other land use types. All six heavy metals, i.e., Ni, Cu, As, Zn, Cr, and Pb, were strongly associated with PC1 (positive loading) and could reflect the contribution of natural geological sources of metals into the coastal sediments. PC2 is highly associated with Cd and could represent anthropogenic sources of metal pollution. Most of the heavy metals exhibited significant positive correlations with total concentrations; however, no significant correlations were observed between them and the soil salt and soil organic carbon. Soil organic carbon exhibited a positive linear relationship with Cu, Pb, and Zn in the first soil layer (0–20 cm); As, Cr, Cu, Ni, Pb, and Zn in the second layer (20–40 cm); and As, Cr, Cu, Ni, Pb, and Zn in the third layer (40–60 cm). Soil organic carbon exhibited only a negative correlation with Cd (P?I geo values), which averaged less than 0 in the three soil layers, this finding indicates that the soils have remained unpolluted by these heavy metals. The mean concentrations of these trace elements were lower than Class I criteria. The degradation wetland restoration suggestions have also been provided in such a way as to restore the reserved flow path of the Yellow River. The results that are associated with trace element contamination would be helpful in providing scientific directions to restore wetlands across the world.  相似文献   

8.
In this study, we interpreted coastal wetland types from an ASTER satellite image in 2002, and then compared the results with the land-use status of coastal wetlands in 1952 to determine the wetland loss and degradation around Jiaozhou Bay. Seven types of wetland landscape were classified, namely: shallow open water, inter-tidal flats, estuarine water, brackish marshes, salt ponds, fishery ponds and ports. Several landscape pattern indices were analysed: the results indicate that the coastal wetlands have been seriously degraded. More and more natural wetlands have been transformed into artificial wetlands, which covered about 33.7% of the total wetlands in 2002. In addition, we used a defined model to assess the impacts of human activities on coastal wetlands. The results obtained show that the coastal wetlands of Jiaozhou Bay have suffered severe human disturbance. Effective coastal management and control is therefore needed to solve the issues of the coastal wetland loss and degradation existing in this area.  相似文献   

9.
This study evaluated the link between watershed activities and salt marsh structure, function, and condition using spatial emergy flow density (areal empower density) in the watershed and field data from 10 tidal salt marshes in Narragansett Bay, RI, USA. The field-collected data were obtained during several years of vegetation, invertebrate, soil, and water quality sampling. The use of emergy as an accounting mechanism allowed disparate factors (e.g., the amount of building construction and the consumption of electricity) to be combined into a single landscape index while retaining a uniform quantitative definition of the intensity of landscape development. It expanded upon typical land use percentage studies by weighting each category for the intensity of development. At the RI salt marsh sites, an impact index (watershed emergy flow normalized for marsh area) showed significant correlations with mudflat infauna species richness, mussel density, plant species richness, the extent and density of dominant plant species, and denitrification potential within the high salt marsh. Over the 4-year period examined, a loading index (watershed emergy flow normalized for watershed area) showed significant correlations with nitrite and nitrate concentrations, as well as with the nitrogen to phosphorus ratios in stream discharge into the marshes. Both the emergy impact and loading indices were significantly correlated with a salt marsh condition index derived from intensive field-based assessments. Comparison of the emergy indices to calculated nitrogen loading estimates for each watershed also produced significant positive correlations. These results suggest that watershed emergy flow is a robust index of human disturbance and a potential tool for rapid assessment of coastal wetland condition.  相似文献   

10.
A portion of Arizona’s San Pedro River is managed as a National Riparian Conservation Area but is potentially affected by ground-water withdrawals beyond the conservation area borders. We applied an assessment model to the Conservation Area as a basis for monitoring long-term changes in riparian ecosystem condition resulting from changes in river water availability, and collected multi-year data on a subset of the most sensitive bioindicators. The assessment model is based on nine vegetation bioindicators that are sensitive to changes in surface water or ground water. Site index scores allow for placement into one of three condition classes, each reflecting particular ranges for site hydrology and vegetation structure. We collected the bioindicator data at 26 sites distributed among 14 reaches that had similar stream flow hydrology (spatial flow intermittency) and geomorphology (channel sinuosity, flood-plain width). Overall, 39% of the riparian corridor fell within condition class 3 (the wettest condition), 55% in condition class 2, and 6% in the driest condition class. Condition class 3 reaches have high cover of herbaceous wetland plants (e.g., Juncus and Schoenoplectus spp.) along the perennial stream channel and dense, multi-aged Populus-Salix woodlands in the flood plain, sustained by shallow ground water in the stream alluvium. In condition class 2, intermittent stream flows result in low cover of streamside wetland herbs, but Populus-Salix remain abundant in the flood plain. Perennial wetland plants are absent from condition class 1, reflecting highly intermittent stream flows; the flood plain is vegetated by Tamarixa small tree that tolerates the deep and fluctuating ground water levels that typify this reach type. Abundance of herbaceous wetland plants and growth rate of Salix gooddingii varied between years with different stream flow rates, indicating utility of these measures for tracking short-term responses to hydrologic change. Repeat measurement of all bioindicators will indicate long-term trends in hydro-vegetational condition.  相似文献   

11.
浅谈滨海湿地生态环境退化监测与评价   总被引:1,自引:0,他引:1       下载免费PDF全文
指出了滨海湿地面临的主要环境问题。简述了美国、欧洲、澳大利亚等滨海湿地现状及监测评价方法。对我国滨海湿地管理与研究进展进行了分析探索。  相似文献   

12.
Constructed wetland has been widely adopted to deal with degraded natural wetlands and water bodies; thus, more attention should be focused on ecological–economic sustainability and ecological efficiency of these projects for long-term success. Emergy accounting was conducted to investigate the energy and resource flows in constructed wetlands during the restoration process. Emergy-based indexes were adopted to evaluate the sustainability of a pilot large-scale constructed wetland in a large wetland restoration project in North China, carried out to enhance the river water quality and offset the degradation of natural wetland. Emergy and emdollar values for ecosystem services and natural capital were also calculated. The results showed that when outflow was considered as the product, the studied large-scale constructed wetland was more self-supporting and could be operated with lesser financial investment, although the waste treatment efficiency and the sustainability index were lower than conventional small-scale treatment constructed wetlands. Compared with natural wetlands, more visits from tourists and lesser financial investment coming in as feedback into the wetland would reduce system environment loading and promote system self-support ability, ultimately generating sustainability. In addition, the studied large-scale constructed wetland can effectively simulate energy and resource flows of natural wetland ecosystem and contribute a roughly equal value of ecosystem services in term of gross primary production. The studied large-scale constructed wetland can successfully achieve ecosystem functions as replacement for natural wetland and hasten the restoration process, although the restoration effectiveness of ecosystem structures in terms of living biomass and water using emergy-value accounting is still inconclusive.  相似文献   

13.
We propose a framework in which thresholds of potential concern (TPCs) and limits of acceptable change (LACs) are used in concert in the assessment of wetland condition and vulnerability and apply the framework in a case study. The lower Murrumbidgee River floodplain (the ‘Lowbidgee’) is one of the most ecologically important wetlands in Australia and the focus of intense management intervention by State and Federal government agencies. We used a targeted management stakeholder workshop to identify key values that contribute to the ecological significance of the Lowbidgee floodplain, and identified LACs that, if crossed, would signify the loss of significance. We then used conceptual models linking the condition of these values (wetland vegetation communities, waterbirds, fish species and the endangered southern bell frog) to measurable threat indicators, for which we defined a management goal and a TPC. We applied this framework to data collected across 70 wetland storages’, or eco-hydrological units, at the peak of a prolonged drought (2008) and following extensive re-flooding (2010). At the suggestion of water and wetland mangers, we neither aggregated nor integrated indices but reported separately in a series of chloropleth maps. The resulting assessment clearly identified the effect of rewetting in restoring indicators within TPC in most cases, for most storages. The scale of assessment was useful in informing the targeted and timely management intervention and provided a context for retaining and utilising monitoring information in an adaptive management context.  相似文献   

14.
We describe a study designed to evaluate the performance ofwetland condition indicators of the Prairie Pothole Region (PPR)of the north central United States. Basin and landscape scaleindicators were tested in 1992 and 1993 to determine theirability to discriminate between the influences of grasslanddominated and cropland dominated landscapes in the PPR. Pairedplots were selected from each of the major regions of the PPR.Among the landscape scale indicators tested, those most capableof distinguishing between the two landscapes were: 1) frequencyof drained wetland basins, 2) total length of drainage ditch perplot, 3) amount of exposed soil in the upland subject to erosion,4) indices of change in area of wetland covered by water, and5) number of breeding duck pairs. Basin scale indicators includingsoil phosphorus concentrations and invertebrate taxa richnessshowed some promise; however, plant species richness was the onlystatistically significant basin scale indicator distinguishinggrassland dominated from cropland dominated landscapes. Althoughour study found a number of promising candidate indicators, oneof our conclusions is that basin scale indicators present anumber of implementation problems, including: skill levelrequirements, site access denials, and recession of site accessby landowners. Alternatively, we suggest that the use oflandscape indicators based on remote sensing can be an effectivemeans of assessing wetland integrity.  相似文献   

15.
As part of a regional study by the Atlantic Slope Consortium (ASC) to develop ecological and socioeconomic indicators of aquatic ecosystem condition, we developed and tested a protocol for rapidly assessing condition of the stream, wetland, and riparian components of freshwater aquatic ecosystems. Aspects of hydrology, vegetation, in-stream and wetland characteristics, and on-site stressors were measured in the field. The resulting metrics were used to develop an index of overall condition, termed the Stream–Wetland–Riparian (SWR) Index. Values of this Index were compared to existing biotic indices and chemical measures, and to a Landscape Index created using satellite-based land cover data and a geographic information system (GIS). Comparisons were made at several levels of spatial aggregation and resolution, from site to small watershed. The SWR Index and associated Landscape Indices were shown to correlate highly with biological indicators of stream condition at the site level and for small contributing areas. The landscape patterns prevalent throughout the entire watershed do not necessarily match the patterns found adjacent to the stream network. We suggest a top-down approach that managers can use to sequentially apply these methods, to first prioritize watersheds based on a relative condition measure provided by the Landscape Index, and then assess condition and diagnose stressors of aquatic resources at the subwatershed and site level.  相似文献   

16.
Accurate estimates of the extent and distribution of wetlands and streams are the foundation of wetland monitoring, management, restoration, and regulatory programs. Traditionally, these estimates have relied on comprehensive mapping. However, this approach is prohibitively resource-intensive over large areas, making it both impractical and statistically unreliable. Probabilistic (design-based) approaches to evaluating status and trends provide a more cost-effective alternative because, compared with comprehensive mapping, overall extent is inferred from mapping a statistically representative, randomly selected subset of the target area. In this type of design, the size of sample plots has a significant impact on program costs and on statistical precision and accuracy; however, no consensus exists on the appropriate plot size for remote monitoring of stream and wetland extent. This study utilized simulated sampling to assess the performance of four plot sizes (1, 4, 9, and 16 km2) for three geographic regions of California. Simulation results showed smaller plot sizes (1 and 4 km2) were most efficient for achieving desired levels of statistical accuracy and precision. However, larger plot sizes were more likely to contain rare and spatially limited wetland subtypes. Balancing these considerations led to selection of 4 km2 for the California status and trends program.  相似文献   

17.
Seventeen fog events were sampled in Baton Rouge, Louisiana during 2002–2004 as part of characterizing wet deposition by fogwater in the heavily industrialized corridor along the Louisiana Gulf Coast in the United States. These samples were analyzed for chemical characteristics such as pH, conductivity, total organic and inorganic carbon, total metals and the principal ion concentrations. The dominant ionic species in all samples were NH4+, NO3, Cl and SO42−. The pH of the fogwater sampled had a mean value of 6.7 with two cases of acidic pH of 4.7. Rainwater and fogwater pH were similar in this region. The acidity of fogwater was a result of NO3 but partly offset by high NH4+. The measured gaseous SO2 accounted for a small percentage of the observed sulfate concentration, indicating additional gas-to-particle conversion of SO2 to sulfate in fogwater. The gaseous NOx accounted for most of the dissolved nitrate and nitrite concentration in fogwater. The high chloride concentration was attributable to the degradation of chlorinated organics in the atmosphere. The metal composition was traced directly to soil-derived aerosol precursors in the air. The major metals observed in fogwater were Na, K, Ca, Fe, Al, Mg and Zn. Of these Na, K, Ca and Mg were predominant with mean concentrations > 100 μM. Al, Fe and Zn were present in the samples, at mean concentrations < 100 μM. Small concentrations of Mn (7.8 μM), Cu (2 μM), Pb (0.07 μM) and As (0.32 μM) were also observed in the fogwaters, and these were shown to result from particulates (PM2.5) in the atmosphere. The contribution to both ions and metals from the marine sources in the Louisiana Gulf Coast was minimal. The concentrations of all principal ionic species and metals in fogwater were 1–2 orders of magnitude larger than in rainwater. Several linear alkane organic compounds were observed in the fogwater, representing the contributions from petroleum products at concentrations far exceeding their aqueous solubility. A pesticide (atrazine) was also observed in fogwater, representing the contribution from the agricultural activities nearby.  相似文献   

18.
The monitoring of resource condition is receiving renewed attention across several levels of government in Australia. This interest is linked to substantial investment in environmental remediation and aquatic ecosystem restoration in particular. In this context, it is timely to consider principles which ought to guide the development and implementation of monitoring programmes for wetland ecosystems. A framework is established which places monitoring in the context of the strategic adaptive management of wetlands. This framework requires there has to be clear goals for the extent and condition of the resource, with these goals being defined within thresholds of acceptable variability. Qualitative and, where possible, quantitative conceptual models linking management interventions to management goals should be the basis of indicator selection and assessment. The intensity of sampling ought to be informed by pilot surveys of statistical power in relation to the thresholds of acceptable variability identified within the management plan.  相似文献   

19.
Two summer intensive monitoring programs were conducted on a small Louisiana urban lake following restoration. Monitoring objectives were directed towards providing high resolution data needed to examine lake temporal and spatial variability. During the first year of post-restoration (1983), anaerobic conditions developed in the lake and a major fish kill (Ictalurus sp.) was observed. Total phosphorus concentrations at stations nearest the lake bottom were exceedingly high (>0.400 mg L–1), suggesting the source of phosphorus was sediment release. Monitoring conducted in 1984 indicated the re-establishment of high benthic demand and internal nutrient recycling patterns. Mean phosphorus levels increased by more than 50% over the observed 1983 values, while dissolved oxygen concentrations demonstrated gradients from surface to bottom and were consistently below 2.0 mg L–1 in the bottom waters.  相似文献   

20.
Bioassessment methods for wetlands, and other bodies of water, have been developed worldwide to measure and quantify changes in “biological integrity.” These assessments are based on a classification system, meant to ensure appropriate comparisons between wetland types. Using a local site-specific disturbance gradient, we built vegetation indices of biological integrity (Veg-IBIs) based on two commonly used wetland classification systems in the USA: One based on vegetative structure and the other based on a wetland’s position in a landscape and sources of water. The resulting class-specific Veg-IBIs were comprised of 1–5 metrics that varied in their sensitivity to the disturbance gradient (R 2?=?0.14???0.65). Moreover, the sensitivity to the disturbance gradient increased as metrics from each of the two classification schemes were combined (added). Using this information to monitor natural and created wetlands will help natural resource managers track changes in biological integrity of wetlands in response to anthropogenic disturbance and allows the use of vegetative communities to set ecological performance standards for mitigation banks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号