首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 82 毫秒
1.
Semipermeable membrane devices (SPMDs) were deployed in the Columbia Slough, near Portland, Oregon, on three separate occasions to measure the spatial and seasonal distribution of dissolved polycyclic aromatic hydrocarbons (PAHs) and organochlorine compounds (OCs) in the slough. Concentrations of PAHs and OCs in SPMDs showed spatial and seasonal differences among sites and indicated that unusually high flows in the spring of 2006 diluted the concentrations of many of the target contaminants. However, the same PAHs - pyrene, fluoranthene, and the alkylated homologues of phenanthrene, anthracene, and fluorene - and OCs - polychlorinated biphenyls, pentachloroanisole, chlorpyrifos, dieldrin, and the metabolites of dichlorodiphenyltrichloroethane (DDT) - predominated throughout the system during all three deployment periods. The data suggest that storm washoff may be a predominant source of PAHs in the slough but that OCs are ubiquitous, entering the slough by a variety of pathways. Comparison of SPMDs deployed on the stream bed with SPMDs deployed in the overlying water column suggests that even for the very hydrophobic compounds investigated, bed sediments may not be a predominant source in this system. Perdeuterated phenanthrene (phenanthrene-d (10)). spiked at a rate of 2 microg per SPMD, was shown to be a reliable performance reference compound (PRC) under the conditions of these deployments. Post-deployment concentrations of the PRC revealed differences in sampling conditions among sites and between seasons, but indicate that for SPMDs deployed throughout the main slough channel, differences in sampling rates were small enough to make site-to-site comparisons of SPMD concentrations straightforward.  相似文献   

2.
Lipid-filled semipermeable membrane devices (SPMDs) are receiving increasing attention as passive, in situ samplers for the assessment of environmental pollutant exposure. Although SPMDs have been successfully used in a variety of field studies in surface waters, only a few studies have addressed their characteristics as groundwater samplers. In this study, the performance of the SPMDs for monitoring organic contaminants in groundwater was evaluated in a pilot field application in an area severely contaminated by chemical waste, especially by chlorinated hydrocarbons. The spatial distribution of hydrophobic groundwater contaminants was assessed using a combination of passive sampling with SPMDs and non-target semiquantitative GC-MS analysis. More than 100 contaminants were identified and semiquantitatively determined in SPMD samples. Along the 6 field sites under investigation, a large concentration gradient was observed, which confirms a very limited mobility of hydrophobic substances in dissolved form in the aquifer. The in situ extraction potential of the SPMD is limited by groundwater flow, when the exchange volume of well water during an exposure is lower than the SPMD clearance volume for the analytes. This study demonstrates that SPMDs present a useful tool for sampling and analyzing of groundwater polluted with complex mixtures of hydrophobic chemicals and provides guidance for further development of passive sampling technology for groundwater.  相似文献   

3.
Despite California policies requiring assessment of ambient wetland condition and compensatory wetland mitigations, no intensive monitoring tools have been developed to evaluate freshwater wetlands within the state. Therefore, we developed standardized, wadeable field methods to sample macroinvertebrate communities and evaluated 40 wetlands across Northern California to develop a macroinvertebrate index of biotic integrity (IBI). A priori reference sites were selected with minimal urban impacts, representing a best-attainable condition. We screened 56 macroinvertebrate metrics for inclusion in the IBI based on responsiveness to percent urbanization. Eight final metrics were selected for inclusion in the IBI: percent three dominant taxa; scraper richness; percent Ephemeroptera, Odonata, and Trichoptera (EOT); EOT richness; percent Tanypodinae/Chironomidae; Oligochaeta richness; percent Coleoptera; and predator richness. The IBI (potential range 0–100) demonstrated significant discriminatory power between the reference (mean = 69) and impacted wetlands (mean = 28). It also declined with increasing percent urbanization (R 2 = 0.53, p < 0.005) among wetlands in an independent validation dataset (n = 14). The IBI was robust in showing no significant bias with environmental gradients. This IBI is a functional tool to determine the ecological condition at urban (stormwater and flood control ponds), as well as rural freshwater wetlands (stockponds, seasonal wetlands, and natural ponds). Biological differences between perennial and non-perennial wetlands suggest that developing separate indicators for these wetland types may improve applicability, although the existing data set was not sufficient for exploring this option.  相似文献   

4.
Monitoring concentrations of organic pollutants in water is essential to predict effects and to initiate preventive steps. Results from the analysis of water samples provide snapshots of a situation, whereas monitoring using semipermeable membrane devices (SPMDs) provides a time-integrated picture of the concentration of pollutants in water. In this investigation, SPMDs, caged mussels and water samples were used to monitor the levels of organotin compounds in the inner Oslofjord, Norway, over a period of 12 weeks. The work-up procedure for the analysis of organotins was optimised, focusing on the clean-up procedure using gel permeation chromatography (GPC). By using several GPC columns, as much as 1 g of triolein could be employed. This reduces the background emission noise on the baseline, leading to an improvement in the detection limits. The main uptake of tributyltin (TBT) in mussels and SPMDs levelled off after 14 days. A longer uptake period was indicated for SPMDs at stations with a high water concentration of TBT (5-10 ng Sn L(-1)) compared with those with a low water concentration of TBT (approximately 1 ng Sn L(-1)). A concentration gradient was observed for water, SPMDs and mussels from the innermost station close to Oslo harbour to the station further out in the fjord, indicating that the three analysed matrices give approximately the same pollution gradient. The bioconcentration factor (BCF) for TBT in mussels was in the range 12-14 000 (wet weight) and, for SPMDs, 10-12 000 (fat). A good correlation with the TBT water concentrations was achieved within a period of 14-30 days of exposure for mussels and after 2-3 months for SPMDs. A good correlation was also found between the TBT concentration in SPMDs and mussels at the end of the experiment. SPMDs can therefore be used to predict concentrations of TBT in both water and mussels.  相似文献   

5.
A novel microbiological mutagenicity assay, based on bioluminescence of a marine bacterium Vibrio harveyi mutant strain, potentially suitable for monitoring and assessment of mutagenic pollution of marine environment, has been described recently. Here, we tested the use of this assay, in combination with either mussels (Mytilus sp.) or semipermeable membrane devices (SPMDs), in assessment of accumulation of mutagens in marine water (samples of Baltic Sea water were tested). Either similar results were obtained in both systems or higher signals in the SPMD-based system were detected, depending on the tested water samples. We conclude that the use of both mussels and SPMDs in combination with the V. harveyi bioluminescence mutagenicity assay is a method suitable for monitoring and assessment of accumulation of mutagenic pollutants in marine environment, but in some cases the SPMD-based system may provide a more sensitive test.  相似文献   

6.
Identifying areas that are susceptible to soil erosion is crucial for water resource planning and management efforts. Furthermore, modeling has proven helpful in recognizing and monitoring high-risk areas at the watershed scale. The Water Erosion Prediction Project (WEPP) geospatial interface (GeoWEPP) software integrates GIS with the WEPP to analyze the spatial variation in soil loss, and it has been used as a modeling tool to determine the areas that are most prone to soil erosion and to evaluate best management practices for the Kasilian watershed in Iran. As much as 62.4 % of the agronomic land in the Kasilian watershed is affected by a high magnitude of erosion (>5 t/ha). On the basis of this study, by using soybeans, high fertilization levels, and the drill-no-tillage system, reductions of erosion by almost 32.68–34.02 % are perceivable in three critical subwatersheds that are located in the cultivated lands. Also, it is projected that reductions in the production of sediment in the range of about 36.7–47.1 % are achievable by structural management within two critical, upland subwatersheds. So, by utilizing the best management strategies, sediment yield can be lowered and the conservation of soil and water is feasible at the watershed scale. These results objectively indicate that GeoWEPP can be efficaciously used for evaluating effective management practices for developing watershed conservation.  相似文献   

7.
A combination of toxicity tests, chemical analyses, andToxicity Identification Evaluations (TIEs) were used toinvestigate receiving water toxicity in the Calleguas Creekwatershed of southern California. Studies were conductedfrom 1995 through 1999 at various sites to investigatecauses of temporal variability of toxicity throughout thissystem. Causes of receiving water toxicity varied by siteand species tested. Investigations in the lower watershed(Revolon Slough, Santa Clara Drain, Beardsley Wash)indicated that toxicity of samples to the cladoceran Ceriodaphnia dubia due to elevated concentrations ofthe organophosphate pesticide chlorpyrifos, while causes ofintermittent toxicity to fathead minnows (Pimephalespromelas) and the alga Selanastrum capricornutum wereless clear. Investigations at sites in the middle and upperreaches of the watershed (Arroyo Simi and Conejo Creek)indicated that the pesticide diazinon was the probable causeof receiving water toxicity to Ceriodaphnia. Elevatedammonia was the cause of toxicity to fathead minnows in theupper watershed sites. Results of these and previousstudies suggest that biota are impacted by degraded streamquality from a variety of point and non-point pollutionsources in the Calleguas Creek watershed. Water qualityresource manager's efforts to identify contaminant inputsand implement source control will be improved with thefindings of this study.  相似文献   

8.
The impact of anthropogenic pollutants on the marine ecosystem is related to the concentrations experienced by the biota in the seawater and the resulting concentration in the organism. Results from monitoring of pollutants in water samples provide snapshots that can be high or low depending on a wide range of variables. To provide more integrated information, semipermeable membrane devices, SPMDs, have been used to monitor different organic pollutants. In this survey, SPMDs were used to monitor organotin compounds in the marine environment. Time-integrated sampling using SPMDs and direct water sampling was carried out at six stations in the inner Oslofjord, Norway. The sample work-up procedure for both water and SPMDs was based on direct derivatisation using NaBEt4 and simultaneous extraction with an organic solvent. Analysis was performed using a gas chromatograph equipped with an atomic emission detector. The results show that SPMDs do accumulate organotin compounds from the water phase. Both tributyl- (TBT) and dibutyltin were detected in all of the analysed membranes while no monobutyltin was found. Levels found in SPMDs range from < 1 to 220 ng Sn SPMD(-1). Water concentrations range from 0.4 to 10 ng Sn L(-1). An investigation of relative levels of TBT showed a similar concentration gradient in the inner Oslofjord using either direct water sampling or passive sampling by SPMDs. As the membranes are able to accumulate the organotins from the water it will be possible to locate lower concentrations than with direct analyses of water samples.  相似文献   

9.
Regression and correlation analyses were used to predict responses of phytoplankton biomass (chlorophyll) (μg L−1) to nitrate (NO3) (mg L−1), phosphate (PO4) (mg L−1) and ammonium (NH4) (mg L−1) dynamics in the shallow hypertrophic Lake Manyas, Turkey. Nutrient concentrations showed a descending gradient with distance, while chlorophyll concentrations showed an ascending gradient with the distance from the Sığırcı Inlet to the Karadere Outlet. Higher nutrient concentrations did always not coincide with higher chlorophyll concentrations. The results showed that regression models developed using seasonal data were more accurate in predicting chlorophyll concentrations than those developed using the pooled data from whole year (based on R 2 and the difference between the measured and predicted values). The findings also revealed that within a single large shallow lake, chlorophyll-nutrient relationships might show significant variations spatially. The objective of this study was to determine the seasonal and spatial variations in the relationships between chlorophyll, nitrate, phosphate and ammonium in the shallow hypertrophic Lake Manyas, Turkey.  相似文献   

10.
I developed a fish-based index of biotic integrity (IBI) to assess environmental quality in intermittent headwater streams in Wisconsin, USA. Backpack electrofishing and habitat surveys were conducted four times on 102 small (watershed area 1.7–41.5 km2), cool or warmwater (maximum daily mean water temperature ≥22 C), headwater streams in spring and late summer/fall 2000 and 2001. Despite seasonal and annual changes in stream flow and habitat volume, there were few significant temporal trends in fish attributes. Analysis of 36 least-impacted streams indicated that fish were too scarce to calculate an IBI at stations with watershed areas less than 4 km2 or at stations with watershed areas from 4–10 km2 if stream gradient exceeded 10 m/km (1% slope). For streams with sufficient fish, potential fish attributes (metrics) were not related to watershed size or gradient. Seven metrics distinguished among streams with low, agricultural, and urban human impacts: numbers of native, minnow (Cyprinidae), headwater-specialist, and intolerant (to environmental degradation) species; catches of all fish excluding species tolerant of environmental degradation and of brook stickleback (Culaea inconstans) per 100 m stream length; and percentage of total individuals with deformities, eroded fins, lesions, or tumors. These metrics were used in the final IBI, which ranged from 0 (worst) to 100 (best). The IBI accurately assessed the environmental quality of 16 randomly chosen streams not used in index development. Temporal variation in IBI scores in the absence of changes in environmental quality was not related to season, year, or type of human impact and was similar in magnitude to variation reported for other IBI's.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号