首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
滇池东南岸农业和富磷区入湖河流地表径流及污染特征   总被引:6,自引:1,他引:5  
应用聚类分析与因子分析方法,通过8次常规监测,对滇池东南岸10条以农业面源和受磷矿开采区影响的入湖河流的地表径流及其水质污染特征进行了分析,并探讨了其空间差异性。在南岸选取降雨过程相同的3条河流,开展暴雨径流监测,探讨污染物在降雨过程中的流失特征。结果表明,新宝象河的平均流量为2.6 m3/s,占总入湖流量的26.5%;总氮、总磷、化学需氧量、悬浮物是滇池的主要污染指标,许多河流均已严重超标。河流水质在空间上可分为3类,具有明显的空间差异性。总氮、总磷、溶解磷、硝态氮对水质污染的贡献率达到了53.636%,氮、磷含量是河流水质污染的主要贡献因子。降雨条件下化学需氧量、悬浮物浓度增长迅速,流量、悬浮物与大多数水质指标均有相关性,磷矿开采对河流水质的影响在降雨条件下更加明显,其悬浮物浓度在降雨条件下比只受农业面源影响的河流最高高出1.9倍。  相似文献   

2.
北京市水环境非点源污染监测与负荷估算研究   总被引:6,自引:1,他引:5  
文章对北京全市域范围开展水环境非点源污染监测以及污染负荷估算研究。监测结果表明,天然降雨氨氮、总氮污染程度高;城区典型下垫面降雨径流的有机污染十分严重,其中屋面降雨径流总氮和氨氮污染最严重,路面降雨径流COD和总磷污染最严重;下垫面降雨径流汇入城市排水管网后,由于冲洗下水道中的沉积物,使得水质污染进一步恶化。农业典型小流域面源污染对水质影响也很明显。城市非点源污染负荷估算选用SWMM暴雨径流模型,农业非点源污染负荷模型选用改进的输出系数模型,估算结果表明:城市非点源污染主要来自大气湿沉降、综合用地、路面和屋面等,农业非点源污染主要来自耕地和林地;全市污染物排放总量中,点源排放总量与非点源排放总量基本各占50%左右。为进一步挖掘污染减排空间,完善总量减排体系提供了依据。  相似文献   

3.
The amount of pollution from nonpoint sources flowing in the streams of the Wujiang River watershed in Guizhou Province, SW China, is estimated by a geographic information system (GIS)-based method using rainfall, surface runoff and land use data. A grid of cells of 100 m in size is laid over the landscape. For each cell, mean annual surface runoff is estimated from rainfall and percent land use, and expected pollutant concentration is estimated from land use. The product of surface runoff and concentration gives expected pollutant loading from that cell. These loadings are accumulated going downstream to give the expected annual pollutant loadings in streams and rivers. By dividing these accumulated loadings by the similarly accumulated mean annual surface runoff, the expected pollutant concentration from nonpoint sources is determined for each location in a stream or river. Observed pollutant concentrations in the watershed are averaged at each sample point and compared to the expected concentrations at the same locations determined from the grid cell model. In general, annual nonpoint source nutrient loadings in the Wujiang River watershed are seen to be predominantly from the agricultural and meadow areas. The total annual loadings through the outlet of the watershed are 40,309 and 2,607 tons for total nitrogen (TN) and total phosphorus (TP), respectively.  相似文献   

4.
Ghaggar, one of the major rivers of northern India originating in outer Himalayas and flowing through the state of Punjab, Haryana, and Rajasthan, is put to multiple uses. Along its course of 464 km, it receives discharge from various cities and runoff from agricultural lands. Punjab and Haryana are two predominantly agricultural states of India using substantial amounts of agrochemicals, yet there are no reports available in literature on the level of pesticides in the stretch of river Ghaggar through Punjab and Haryana. This is the first report on pesticide pollution of the river Ghaggar in Haryana. Water samples along the 230-km stretch of the river in Haryana were analyzed for the presence of organochlorine insecticide residues. While aldrin and dieldrin were below detection limits, both hexachlorocyclohexane (HCH) and dichlorodiphenyltrichloroethane (DDT) were traceable in all the water samples. High concentration of β-HCH among ΣHCH indicates old pollution source whereas predominance of p,p -DDT among ΣDDT reflects its recent use in the catchment area of the river. The concentrations of HCH and DDT in all the samples were above the permissible limits prescribed by the European Commission Directive for drinking purposes.  相似文献   

5.
采用3种方法分析黑龙江省松花江流域高锰酸盐指数非点源污染的负荷。分析结果显示,非点源污染造成的松花江流域高锰酸盐指数负荷约为70%;松花江流域支流源头属于高高锰酸盐指数河段,本底值约为5mg/L,河流流经1000Km非点源污染会增加高锰酸盐指数约1mg/L;松花江流域河流中高锰酸盐指数含量高的主要原因是流域内土壤有机质含量高。  相似文献   

6.
太湖主要入湖河流排污控制量研究   总被引:4,自引:1,他引:3  
利用2006—2008年的监测数据对太湖主要入湖河流的水环境状况进行了分析,通过对研究区工业污染源、农业污染源和城镇生活污水排污的分布以及入河情况的调查,对各种污染源的入河量进行了计算,根据确定的水质目标,分别计算出主要入湖河流以及区域水系的水环境容量和排污控制量。结果表明:15条主要入湖河流超标现象显著,近3a来污染程度有所波动,N、P污染最为严重。研究区内污染物入河量较大,未接管的生活源污染物入河量所占比重最大,各类污染物均在50%~60%之间;张家港市的污染物入河量最大,各类污染物所占比重达总入河量的18%~20%。研究区内河网密布,水环境容量分布不均匀,望虞河、直湖港、武进港等7条河流水环境容量较大,张家港市区域水环境容量较大。为保证水质达标,研究区内近期共须削减CODCr66554.38t/a、NH4-N8105.71t/a、TP1324.42t/a;远期共须削减CODCr96719.08t/a、NH4-N11541.45t/a、TP1788.71t/a。  相似文献   

7.
The river Hindon is one of the important tributaries of river Yamuna in western Uttar Pradesh (India) and carries pollution loads from various municipal and industrial units and surrounding agricultural areas. The main sources of pollution in the river include municipal wastes from Saharanpur, Muzaffarnagar and Ghaziabad urban areas and industrial effluents of sugar, pulp and paper, distilleries and other miscellaneous industries through tributaries as well as direct inputs. In this paper, chemical mass balance approach has been used to assess the contribution from non-point sources of pollution to the river. The river system has been divided into three stretches depending on the land use pattern. The contribution of point sources in the upper and lower stretches are 95 and 81% respectively of the total flow of the river while there is no point source input in the middle stretch. Mass balance calculations indicate that contribution of nitrate and phosphate from non-point sources amounts to 15.5 and 6.9% in the upper stretch and 13.1 and 16.6% in the lower stretch respectively. Observed differences in the load along the river may be attributed to uncharacterized sources of pollution due to agricultural activities, remobilization from or entrainment of contaminated bottom sediments, ground water contribution or a combination of these sources.  相似文献   

8.
上海市水体富营养化及洗涤剂中磷的影响研究   总被引:3,自引:0,他引:3  
针对上海市水体污染状况进行调查研究,结果表明,上海市主要水体苏州河和黄浦江有机污染日益严重,其中苏州河TP 0.6mg/L、TN 10.06mg/L,黄浦江TP 0.23mg/L、TN 4.03mg/L,超标较严重,存在发生富营养化的条件,根据国内外经验和上海的相关资料估算,洗涤剂中的磷占总磷负荷的6.82%。  相似文献   

9.
The aim of this study was to evaluate the water quality of the Cértima River basin (Central Portugal). For that purpose, surface water samples were collected in March, May and July 2003, at 10 selected sampling sites, and were analysed for physicochemical parameters, namely temperature, conductivity, pH, total suspended solids, dissolved oxygen, biochemical oxygen demand (BOD5), Kjeldahl nitrogen and total phosphorus. Results revealed an acceptable water quality during the spring season. Maxima of 64 mg dm−3 for BOD5, 39 mg dm−3 for Kjeldahl nitrogen, and 5.2 mg dm−3 for total phosphorus, were recorded during summer, indicating a significant degradation of the water quality in a river stretch located downstream of the town of Mealhada. These values, which did not comply with the objectives of minimum quality for surface waters prescribed by the Portuguese legislation, were related to domestic wastewater discharges and runoff waters from a cattle farm. Besides their effects on the middle stretch of the river, these pollution sources were the most likely cause of the high nutrient load in downstream waters, and thus may have a major impact on the trophic status of Pateira de Fermentelos, a sensitive wetland area located in the lower Cértima basin.  相似文献   

10.
简述了太浦河界标断面2020年水质考核目标以及区域水污染现状。指出,界标断面水质主要超标因子为DO和TP,农业面源污染、工业污染、生活污水处理相对滞后、内源污染、部分黑臭河道河段清淤不彻底是导致区域水污染的主要因素。提出,要推进农业面源污染治理,强化工业污染源治理,加强区域性污染物控制以及生活污染源整治,促进河湖生态系统恢复,加强自动监测站管理工作。  相似文献   

11.
The methodology of materials accounting is presented and applied to developing nutrient balance (nitrogen and phosphorus) in a river basin. The method is based on the balance principle: inputs and outputs of each nitrogen and phosphorus related sub-systems were balanced. The application of the methodology strategies was illustrated by means of a case study of the Krka river, Slovenia. Different pathways of emission to surface waters were taken into account: WWTP discharges, direct discharges, erosion/runoff and baseflow. Total annual emission into the river Krka was estimated to be 362 tonnes N/year and 73.3 tonnes P/year. The main sources of nitrogen are diffuse sources, emitted via baseflow (52%). Other important sources are effluents from WWTP, which account for 36% of total emissions. Other sources like erosion and direct discharges to surface water (animal manure, industry, households) are of lower magnitude. Erosion is main source of phosphorus emission (55% of total emission), WWTP effluents account for 37% of total emission, while other sources are less important. Besides reduction of point sources by means of wastewater collection and implementation of nutrient removal technology, managing agricultural nitrogen and phosphorus to protect water quality should become a major challenge in the Krka river basin.  相似文献   

12.
为把握厂村融合区工农业复合面源污染现状及特征,选取典型区域礼嘉、洛阳、雪堰3镇进行研究,结果表明,2017年3镇复合面源等标污染负荷总量为1. 85×10~9m~3/a,其中总氮(TN)等标负荷量最高,占总量的44. 73%,为优先控制因子; 57个行政村中,污染物负荷量及负荷强度均较高的行政村大多集中在洛阳镇和礼嘉镇,如圻庄村、天井村、毛家村、大路村等,为优先控制区域;各污染源中,农村生活污水和畜禽养殖贡献的等标污染负荷量最高,分别占总量的37. 88%和35.49%,其次是种植业和厂区面源,贡献率分别为13. 17%和12. 77%,水产养殖贡献率最低;通过聚类分析将厂村融合区复合面源污染类型分为6类。  相似文献   

13.
The nonpoint source (NPS) pollution is difficult to manage and control due to its complicated generation and formation. Load estimation and source apportionment are an important and necessary process for efficient NPS control. Here, an integrated application of semi-distributed land use-based runoff process (SLURP) model, export coefficients model (ECM), and revise universal soil loss equation (RUSLE) for the load estimation and source apportionment of nitrogen and phosphorus was proposed. The Jinjiang River (China) was chosen for the evaluation of the method proposed here. The chosen watershed was divided into 27 subbasins. After which, the SLURP model was used to calculate land use runoff and to estimate loads of dissolved nitrogen and phosphorus, and ECM was applied to estimate dissolved loads from livestock and rural domestic sewage. Next, the RUSLE was employed for load estimation of adsorbed nitrogen and phosphorus. The results showed that the 12,029.06 t?a?1 pollution loads of total NPS nitrogen (TN) mainly originated from dissolved nitrogen (96.24 %). The major sources of TN were land use runoff, which accounted for 45.97 % of the total, followed by livestock (32.43 %) and rural domestic sewage (17.83 %). For total NPS phosphorous (TP), its pollution loads were 570.82 t?a?1 and made up of dissolved and adsorbed phosphorous with 66.29 and 33.71 % respectively. Soil erosion, land use runoff, rural domestic sewage, and livestock were the main sources of phosphorus with contribution ratios of 33.71, 45.73, 14.32, and 6.24 % respectively. Therefore, land use runoff, livestock, and soil erosion were identified as the main pollution sources to influence loads of NPS nitrogen and phosphorus in the Jinjiang River and should be controlled first. The method developed here provided a helpful guideline for conducting NPS pollution management in similar watershed.  相似文献   

14.
To determine the possible contributions of point and non-point sources to carbon and nutrient loading in the Ganga River, we analyzed N, P, and organic carbon (OC) in the atmospheric deposits, surface runoff, and in the river along a 37-km stretch from 2013 to 2015. We also assessed the trophic status of the river as influenced by such sources of nutrient input. Although the river N, P, and productivity showed a declining trend with increasing discharge, runoff DOC and dissolved reactive phosphorus (DRP) increased by 88.05 and 122.7% between the Adpr and Rjht sites, indicating contributions from atmospheric deposition (AD) coupled with land use where agriculture appeared to be the major contributor. Point source input led to increased river concentrations of NO3 ?, NH4 +, DRP, and DOC by 10.5, 115.9, 115.2, and 67.3%, respectively. Increases in N, P, and productivity along the gradient were significantly negatively correlated with river discharge (p < 0.001), while river DOC and dissolved silica showed positive relationships. The results revealed large differences in point and non-point sources of carbon and nutrient input into the Ganga River, although these variations were strongly influenced by the seasonality in surface runoff and river discharge. Despite these variations, N and P concentrations were sufficient to enhance phytoplankton growth along the study stretch. Allochthonous input together with enhanced autotrophy would accelerate heterotrophic growth, degrading the river more rapidly in the near future. This study suggests the need for large-scale inter-regional time series data on the point and non-point source partitioning and associated food web dynamics of this major river system.  相似文献   

15.
The temporal changes and spatial variability of phosphorus andnitrogen losses and concentrations in Finland during the period1981–1997 were studied in 15 small agricultural and forestedcatchments. In addition, four coastal river basins with highagricultural land use located in southern Finland were includedin the study in order to assess the representativeness ofagricultural loss estimates from small agricultural catchments.The mean annual loss specific for agricultural land was estimatedto be on average 110 kg km-2 a-1 for total phosphorusand 1500 kg km-2 a-1 for total nitrogen. The resultsfrom small agricultural catchments were in agreement with thecorresponding loss estimates from rivers, with an average of137 kg km-2 a-1 for total phosphorus and 1800 kg km-2a-1 for total nitrogen. The results from the studiedagricultural catchments and rivers during the period 1981–1997suggest that weather-driven fluctuation in discharge was usuallythe main reason for changes in nutrient losses, and little or noimpact of changes in agricultural production or managementpractises can be observed. In forested areas the total phosphorusloss (average 9 kg km-2 a-1) and total nitrogen loss(average 250 kg km-2 a-1) were lower than inagricultural areas. In forested catchments the impact of forestryoperations, such as clear-cutting and fertilization, and theimpact of atmospheric nitrogen deposition can be seen in changesin nutrient losses.  相似文献   

16.
17.
菏泽市地处鲁西南高氟地区,其河流中的高浓度氟化物不仅会通过径流过程影响南四湖水质,还会影响当地水生态平衡及人体健康。通过分析菏泽市主要河流中氟化物的时空分布特征,并结合地下水、土壤及废污水调查结果,探讨了影响河流中氟化物分布的主要因素。结果表明:研究区河流中氟化物的平均浓度在0.98~1.45 mg/L之间,氟化物浓度分布呈现出枯水期>平水期>丰水期、下游>上游、支流>干流的特征。氟化物浓度较高的河流呈现高pH、低钙的特点,水化学组分以Na-HCO3型、Na-SO4型为主。河流中氟化物的浓度主要受蒸发浓缩和岩石风化作用的影响。研究区地下水和土壤中氟化物的背景浓度整体较高。枯水期高氟地下水可能通过直接补给河流对河流水体产生影响,丰水期土壤中的氟也会通过径流过程汇入河流。人类工农业生产过程大量开采利用当地高氟地下水,而高氟废水最终则会进入河流,导致河流中氟化物的含量升高。  相似文献   

18.
平原感潮河网地区非点源污染严重,由于具有交叉污染等特性,造成了整个平原河网存在严重的环境污染和环境安全问题。构建了大尺度非点源污染负荷匡算模型,对南通平原河网地区非点源污染负荷进行了匡算。根据不同的产污方式,将非点源污染分为城镇降雨径流污染、畜禽养殖污染、农田降雨径流污染、农村生活污染和水产养殖污染等5种类型,分别计算其流失过程。  相似文献   

19.
This article discusses the generation and migration process of nitrate-N pollution in shallow groundwater caused by agricultural nonpoint source pollution in the catchment area of Shitoukoumen Reservoir in northeast China. By monitoring the shallow groundwater nitrate-N in the low-water period, the normal season, and high-flow period in the study area for a year, it was found that the nitrate-N concentration in the shallow groundwater of this area had a seasonal variation in both spatial and time distribution. In the time distribution, the peak value appeared in July, the high-flow period, and the valley value appeared in April, the low-water period, and showed a significant correlation with the time distribution of fertilization rate and rainfall. In the spatial distribution of nitrate-N pollution, when the distribution in shallow groundwater was analyzed separately in the three different periods (low-water period, the normal season, and high-flow period) and the discipline transference and enrichment of nitrate-N pollution in shallow groundwater was determined, this indicated that the region in the southeast study area where runoff conditions were better was less contaminated, and the region where runoff conditions were poor, as well as the region along the river were seriously polluted. The nitrate-N concentration in shallow groundwater was distributed mainly along the path of groundwater flow and was excreted in the drainage region. This showed that the spatial distribution of nitrate-N concentration in the shallow groundwater of the entire region was mainly controlled by the groundwater flow system. At the same time, in the middle and lower reaches of the study area, the seasonal changes in the recharged–excreted relationship between groundwater and river caused seasonal differences in the spatial distribution of nitrate-N pollution in groundwater. The combined effects of the groundwater mobility and the surface river resulted in a poor correlation between the groundwater nitrate-N concentration and land-use types. Only in the plain area where there was little influence from groundwater runoff and the surface river did the groundwater nitrate-N concentration correlate with land-use types. The spatial and time distribution of nitrate-N concentration in the shallow groundwater of the study area was impacted by agricultural nonpoint source pollution, the groundwater flow system, and the surface river and formed a concentration response system which uses basins as a unit.  相似文献   

20.
将农业面源污染风险区划入生态保护红线中,防范由此导致的饮用水水源富营养化现象,是值得深入探讨的科学问题。以南水北调中线重要水源地丹江口水库流域十堰段为例,基于农业面源污染风险区的识别,通过情景分析探讨生态保护红线优化方法,改善区域生态环境,推动绿色发展。结果表明:将农业面源污染极高风险区划入生态保护红线,区域氮、磷流失削减率可分别达35.9%和26.33%,在一定程度上增强了生态系统连通性,且人口生态压力指数较小(0.23),可统筹生态效益和经济效益的发展。研究结果有望为存在农业面源污染风险的丘陵山区提供一种红线优化新思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号