首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
基于2018年高分系列遥感影像数据,提取山东省省级自然保护区人类土地利用活动信息,探讨人类活动对山东省省级自然保护区的影响。结果表明,自然保护区人类活动总面积占保护区总面积的22.2%,人类活动影响指数介于0~0.01368。不同类型的自然保护区人类活动面积不同,主要影响因子差异明显,森林生态类保护区以农业用地为主,内陆湿地类保护区以养殖场为主。内陆湿地类保护区是受到人类干扰程度最为严重的保护区类型,野生动物类保护区受到人类影响最小。  相似文献   

2.
基于RSEI模型的祁连山自然保护区生态环境质量评价   总被引:1,自引:0,他引:1  
基于1988—2018年祁连山国家自然保护区的Landsat系列遥感影像,利用绿度、湿度、热度和干度指标计算获得遥感生态指数(RSEI),并应用RSEI对保护区近30年的生态环境质量作评价。结果表明:近30年来该保护区生态环境质量整体呈好转趋势,RSEI上升0.016,可1998—2018年生态环境质量有所下降;生态环境质量改善区域多位于保护区西北角和东南角,保护区中段和外围生态环境质量有所下降;应重点在2 km~4 km高程区保护植被生长,减少人类活动破坏。  相似文献   

3.
基于遥感影像、无人机航摄与移动核查技术,构建了集自然保护区"一张图"、图斑任务管理、移动核查为一体的天地一体化自然保护区人类活动监管系统,并以防城金花茶国家级自然保护区为例,进行试点监测监管研究。结果表明,利用监管系统可提高自然保护区监管时效性,有效解决监管盲区。对防城金花茶国家级自然保护区的人类活动进行监测评价,该保护区有工矿用地、农田、居民点、道路、其他人工设施等5类,以农田、居民点、普通道路为主,人类活动影响一般。  相似文献   

4.
利用扬州市2006—2010年间卫星遥感数据,对扬州市植被覆盖状况进行了研究。首先对遥感影像进行几何校正,其次对遥感影像进行解译,提取植被覆盖信息,计算扬州市植被覆盖指数,同时对扬州市近5年植被覆盖进行了动态变化分析。研究表明,扬州市近5年林地面积大幅度提高,植被覆盖指数逐年增加,生态环境状况逐年好转。  相似文献   

5.
以河南省大别山水土保持国家重点生态功能区为研究区,基于RS与GIS获取2012年和2017年研究区植被覆盖、土地利用、土壤侵蚀等遥感解译数据,从生态功能、生态结构和生态压力3个方面,采用综合指数法,对研究区生态状况进行动态监测与评价。结果表明,2012—2017年间,研究区土地利用结构发生较明显的变化,林草地覆盖率上升9.85%,耕地和建设用地面积比上升13.23%,水域湿地面积比变化不大;植被覆盖指数上升 62.74%,中度以上土壤侵蚀面积比略有增加;生态状况变化度ΔF=4.95,整体生态状况等级由良变为优,生态状况变化度评级为显著变好。  相似文献   

6.
通过对兵团土地利用空间格局变化分析,选择合适的土地利用政策保护生态环境。运用RS和GIS技术对兵团近10年土地利用/覆被变化及景观格局空间变化进行分析,并在此基础上运用Markov模型对未来30年土地利用变化进行预测。2000—2010年,新疆生产建设兵团景观多样性升高,连通性增强,形状愈来愈简单,景观格局整体变化不大;草地、灌丛、湿地、荒漠和冰川/永久积雪面积减少,耕地和城镇面积增加,森林保持稳定;人为干扰对土地利用结构的变化具有重要作用,土地利用强度受人为活动影响的同时受土地利用政策影响;在未来30年间耕地和城镇面积继续增加,除森林基本保持不变外其他土地利用类型均减小。兵团城镇用地与草地和耕地之间的矛盾逐渐显现,势必引起兵团生态格局的变化。因此,必须实行合适的土地利用政策保护环境。  相似文献   

7.
基于GF-1/WFV影像的地表覆被自动提取方法,利用青海祁连山地区复杂、独特的地表覆被垂直变化特征,建立以祁连山地区为例的水源涵养区地表覆被分类规则。结果表明,总体分类精度为95.73%,Kappa值为0.889 6,分类精度优于80%。尝试将网络远程视频监控系统应用在遥感解译中,选取样本点近距离验证典型地物类型,包括生态脆弱区(冰川)、生物多样性重点保护区(青海小叶杨原种保护地)等,分类精度为94.8%,应用潜力大。  相似文献   

8.
基于Landsat ETM+等影像的无锡市十年陆地生态环境遥感评价   总被引:1,自引:0,他引:1  
遥感和GIS技术的发展为研究区域生态环境变化提供了有效手段,以无锡市2004-2013年的ETM+等遥感影像和GDEM高程数据为数据源,运用遥感和GIS方法提取生态因子信息并进行陆地生态状况遥感评价。结果表明,无锡市近十年陆地生态环境整体趋好。  相似文献   

9.
采用长时间多源遥感数据对塔里木河重要生态功能区进行了土地利用变化、植被指数分析,同时结合多年地面调查监测数据,系统分析了区域生态环境变化情况,并对近五年区域生态环境质量开展了评价,环境质量变化值ΔI为2.58,生态环境质量略有下降,其中环境状况指标和植被覆盖率指数起主导作用。  相似文献   

10.
针对环境卫星 CCD 影像,结合影像质量评价、专题制图、土地利用/覆被解译以及常用植被指数构建,以青海湖区域为例,与Landsat TM影像进行比对研究。结果表明,在与TM影像质量评价参数比较中,TM影像较优,而环境卫星影像具有很大的改善空间;在对地物判译中,环境卫星影像色彩稍暗淡,但对大多数地物解译判读的边界更清晰;环境卫星覆盖度大,区域制图的优势非常明显;生态监测定量遥感常用的植被指数比较中两种数据大致相同。  相似文献   

11.
Satellite-based remote sensing offers great potential for frequent assessment of forest cover over broad spatial scales, however, calibration and validation using ground-based surveys are needed. In this study, forest cover estimates for the United States from a recently developed land surface cover map generated from satellite remote sensing data were compared to state-level inventory data from the U.S. National Resources Planning Act Timber Database. The land cover map was produced at the U.S. Geological Survey EROS Data Center and is based on imagery from the AVHRR sensor (spatial resolution 1.1 km). Vegetation type was classified using the temporal signal in the Normalized Difference Vegetation Index derived from AVHRR data. Comparisons revealed close agreement in the estimate of forest cover for extensively forested states with large polygons of relatively similar vegetation such as Oregon. Larger forest cover differences were observed in other states with some regional patterns in the level of agreement apparent.Comparisons in inventory- and remote sensing-based estimates of current forested area with potential vegetation maps indicated the magnitude of past land use change and the potential for future changes. The remote sensing approach appears to hold promise for conducting surveys of forest cover where inventory data are limited or where rates of vegetation change, due to human or climatic factors, are rapid.  相似文献   

12.
为研究我国典型滨海湿地环境评价方法,利用卫星遥感技术,结合地面生态调查,构建了以自然湿地面积比例、人工岸线比例等8项因子共同组成的指标体系,通过层次分析法和专家打分法进行权重赋值后,阐述了数据处理和计算的主要流程,提出了滨海湿地环境指数CWEI的概念和表征意义。应用上述方法对江苏盐城湿地珍禽国家级自然保护区进行了典型示范评价,结果表明该方法能够较好地反映滨海湿地环境状况与变化趋势。  相似文献   

13.
The dynamics of vegetation coverage and associated driving forces are one of the key issues in global environmental change. In the study, taking Lijiang County as a case, the Normalized Difference Vegetation Index was used to quantify vegetation coverage change in mountain areas of Northwestern Yunnan, China, with the application of remote sensing data and GIS technologies. And associated driving forces of vegetation coverage change were also analyzed, with a focus on land use change and elevation. The results showed that there was high vegetation coverage with a significant increase in the whole county during 1986-2002. However, due to economic development and the implementation of environmental protection polices, vegetation coverage change in the county showed distinct spatial diversity, which mainly behaved as the increasing in the northwest of the county with low human activities, and the decreasing in the south with high economic development. The results also showed that as a restrictive factor, elevation was of great signification on the spatial distribution of vegetation coverage in a broad scale; while in the county level, it was land use that determined the vegetation coverage, since the change of vegetation coverage grades in the study area was mainly associated with the change of land use types.  相似文献   

14.
In recent years, land use/cover dynamic change has become a key subject urgently to be dealt with in the study of global environmental change. This research utilizes the integrated remote sensing and geographic information systems (GIS) in the southern part of Iraq (Basrah Province was taken as a case) to monitor, map, and quantify the environmental change using a 1:250,000 mapping scale. Remote sensing and GIS software were used to classify Landsat TM in 1990 and Landsat ETM+ in 2003 imagery into five land use and land cover (LULC) classes: vegetation land, sand land, urban area, unused land, and water bodies. Supervised classification and normalized difference buildup index, normalized difference vegetation index, normalized difference bare land index, the normalized differential water index, crust index (CI) algorithms, and change detection techniques were adopted in this research and used, respectively, to retrieve its class boundary. An accuracy assessment was performed on the 2003 LULC map to determine the reliability of the map. Finally, GIS software was used to quantify and illustrate the various LULC conversions that took place over the 13-year span of time. The results showed that the urban area, sand lands, and bare lands had increased by the rate of 1.2%, 0.8%, and 0.4% per year, with area expansion from 3,299.1, 4,119.1 km2, and 3,201.9 km2 in 1990 to 3,794.9, 4,557.7, and 3,351.7 km2 in 2003, respectively. While the vegetation cover and water body classes were about 43.5% in 1990, the percentage decreased to about 39.6% in 2003. This study demonstrates the effectiveness of the remote sensing and GIS technologies in detecting, assessing, mapping, and monitoring the environmental changes.  相似文献   

15.
This study investigates land cover change near the abandoned Pine Point Mine in Canada’s Northwest Territories. Industrial mineral development transforms local environments, and the effects of such disturbances are often long-lasting, particularly in subarctic, boreal environments where vegetation conversion can take decades. Located in the Boreal Plains Ecozone, the Pine Point Mine was an extensive open pit operation that underwent little reclamation when it shut down in 1988. We apply remote sensing and landscape ecology methods to quantify land cover change in the 20 years following the mine’s closure. Using a time series of near-anniversary Landsat images, we performed a supervised classification to differentiate seven land cover classes. We used raster algebra and landscape metrics to track changes in land cover composition and configuration in the 20 years since the mine shut down. We compared our results with a site in Wood Buffalo National Park that was never subjected to extensive anthropogenic disturbance. This space-for-time substitution provided an analog for how the ecosystem in the Pine Point region might have developed in the absence of industrial mineral development. We found that the dense conifer class was dominant in the park and exhibited larger and more contiguous patches than at the mine site. Bare land at the mine site showed little conversion through time. While the combination of raster algebra and landscape metrics allowed us to track broad changes in land cover composition and configuration, improved access to affordable, high-resolution imagery is necessary to effectively monitor land cover dynamics at abandoned mines.  相似文献   

16.
Deforestation in the biosphere reserves, which are key Protected Areas has negative impacts on biodiversity, climate, carbon fluxes and livelihoods. Comprehensive study of deforestation in biosphere reserves is required to assess the impact of the management effectiveness. This article assesses the changes in forest cover in various zones and protected areas of Nilgiri Biosphere Reserve, the first declared biosphere reserve in India which forms part of Western Ghats-a global biodiversity hotspot. In this study, we have mapped the forests from earliest available topographical maps and multi-temporal satellite data spanning from 1920’s to 2012 period. Mapping of spatial extent of forest cover, vegetation types and land cover was carried out using visual interpretation technique. A grid cell of 1 km?×?1 km was generated for time series change analysis to understand the patterns in spatial distribution of forest cover (1920–1973–1989–1999–2006–2012). The total forest area of biosphere reserve was found to be 5,806.5 km2 (93.8 % of total geographical area) in 1920. Overall loss of forest cover was estimated as 1,423.6 km2 (24.5 % of the total forest) with reference to 1920. Among the six Protected Areas, annual deforestation rate of >0.5 was found in Wayanad wildlife sanctuary during 1920–1973. The deforestation in Nilgiri Biosphere Reserve is mainly attributed to conversion of forests to plantations and agriculture along with submergence due to construction of dams during 1920 to 1989. Grid wise analysis indicates that 851 grids have undergone large-scale negative changes of >75 ha of forest loss during 1920–1973 while, only 15 grids have shown >75 ha loss during 1973–1989. Annual net rate of deforestation for the period of 1920 to 1973 was calculated as 0.5 followed by 0.1 for 1973 to 1989. Our analysis shows that there was large-scale deforestation before the declaration of area as biosphere reserve in 1986; however, the deforestation has drastically reduced after the declaration due to high degree of protection, thus indicating the secure future of reserve in the long term under the current forest management practices. The present work will stand as the most up-to-date assessment on the forest cover of the Nilgiri Biosphere Reserve with immediate applications in monitoring and management of forest biodiversity.  相似文献   

17.
The effect of land cover change, from natural to anthropogenic, on physical geography conditions has been studied in Kayisdagi Mountain. Land degradation is the most important environmental issue involved in this study. Most forms of land degradation are natural processes accelerated by human activity. Land degradation is a human induced or natural process that negatively affects the ability of land to function effectively within an ecosystem. Environmental degradation from human pressure and land use has become a major problem in the study area because of high population growth, urbanization rate, and the associated rapid depletion of natural resources. When studying the cost of land degradation, it is not possible to ignore the role of urbanization. In particular, a major cause of deforestation is conversion to urban land. The paper reviews the principles of current remote sensing techniques considered particularly suitable for monitoring Kayisdagi Mountain and its surrounding land cover changes and their effects on physical geography conditions. In addition, this paper addresses the problem of how spatially explicit information about degradation processes in the study area rangelands can be derived from different time series of satellite data. The monitoring approach comprises the time period between 1990 and 2005. Satellite remote sensing techniques have proven to be cost effective in widespread land cover changes. Physical geography and particularly natural geomorphologic processes like erosion, mass movement, physical weathering, and chemical weathering features etc. have faced significant unnatural variation.  相似文献   

18.
基于神东中心区植被覆盖变化的多时相遥感监测   总被引:1,自引:1,他引:0       下载免费PDF全文
准确、快速地获取植被覆盖信息是矿区生态恢复和建设的关键与重点。以神东中心区为研究对象,利用2002、2005、2007、2010、2012年Landsat TM/ETM+和HJ1A-CCD1五景同期遥感数据,采用像元二分模型法,归一化植被指数(NDVI)值反演植被覆盖度,对研究区生态环境变化规律进行分析。结果表明,神东中心区平均植被覆盖度整体呈上升趋势,区内绝大部分地表覆盖程度得到改善,改善区面积达64.01%,退化区面积只有15.34%。该方法快速、定量地反映矿区植被覆盖及变化情况,为矿区生态环境动态监测和治理提供技术支持。  相似文献   

19.
基于2001—2018年永登县5幅遥感影像,利用绿度、湿度、盐度、沙度指数耦合构建半干旱地区遥感生态指数(SA-RSEI),并应用SA-RSEI指数对永登县生态环境质量进行定量评价。结果表明:在2001—2018年间永登县生态环境质量由较差提升至一般,生态环境等级优良以上的区域面积占比逐渐上升,较差和差等级面积占比逐渐下降;通过空间相关性分析可知,GDVI和WET为正向指标,DI和SI为负向指标;通过LISA聚类图发现空间分布是聚集的,而不是随机的;高-高聚集区主要集中于连城国家级自然保护区和奖俊埠林场,低-低聚集区主要集中在中部黄土丘陵区。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号