首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
火炸药厂红水污染土壤中的主要污染物为二硝基甲苯磺酸盐[DNTS,包括2,4-二硝基甲苯-3-磺酸盐(2,4-DNT-3-SO_3~-)和2,4-二硝基甲苯-5-磺酸盐(2,4-DNT-5-SO_3~-)2种异构体]。研究建立了振荡提取-高效液相色谱法测定土壤中DNTS的方法。4种土壤(黄土、棕土、红壤和黑土)和5个浓度水平(50、100、250、500、1 000 mg/kg)时,DNTS的回收率为69.4%~111%,变异系数为0.28%~6.62%(n=3)。应用该方法测定甘肃某火炸药厂红水污染土壤样品,2,4-DNT-3-SO_3~-和2,4-DNT-5-SO_3~-浓度实测值(平均值分别为505、25.2 mg/kg)重复性好,变异系数为1.29%和1.53%(n=3)。  相似文献   

2.
An oil spill polluted site at Ogbodo-Isiokpo in Ikwere Local Government Area of Rivers State in southern Nigeria, was identified for study following three successive reconnaissance surveys of oil fields in the Agbada west plain of Eastern Niger Delta. A sampling area of 200 m × 200 m was delimited at the oil spill impacted site using the grid technique and soils were collected at surface (0–15 cm) and subsurface (15–30 cm) depths from three replicate quadrats. A geographically similar, unaffected area, located 50 m adjacent to the polluted site, was chosen as a control (reference) site. Total extractable hydrocarbon contents of the polluted soils ranged from 3.02–4.54 and 1.60–4.20 mg/kg (no overlap in standard errors) at surface and subsurface depths respectively. The concentrations of two “diagnostic” trace heavy metals, nickel (Ni) and vanadium (V), which are normal constituents of crude oil, were also determined in the soils by atomic absorption spectrophotometric method after pre-extraction of cations with dithionite–citrate carbonate. Ni varied from 0.15 to 1.65 mg/kg in the polluted plots and from 0.18 to 0.82 mg/kg in the unpolluted plots; vanadium varied from 0.19 to 0.70 mg/kg in the polluted plots and from 0.14 to 0.38 mg/kg in the unpolluted plots. Ni and V were more enhanced (p < 0.05) in the oil-polluted soils, especially at subsurface depth. Whilst the oil spillage could be said to be indirectly responsible for the enhanced concentrations of nickel and vanadium via the injection and availability of the petroleum hydrocarbons that might have increased the activities of biodegradation on site, the physico-chemical properties of the soils and inherent mobility of metals, as well as the intense rainfall and flooding that characterized the period of study, may have also contributed, at least in part, to these enhanced concentrations. Such levels of Ni and V may result to enhanced absorption by plants, which may bring about possible bioaccumulation in such plants and the animals that depend on them for survival and all of these may lead to toxic reactions along the food chain.  相似文献   

3.
Foliar Cd and Zn concentrations of hybrid poplars commonlyplanted on sediment-derived soils were assessed in field circumstances. Selected sites covered a range of soil types andplantation characteristics. Reference data for foliar concentrations were established from samples taken in a tree-nursery. Even in the reference situation a large variationin foliar Cd and Zn concentrations was observed, with relative standard deviations in the order of 15%. Foliar concentrations of Cd and Zn in poplars growing on sediment-derived soils increased during the growing season. The accumulation rate was markedly higher on polluted sediment-derived soils than in thereference situation. Poplars grown on polluted sedimentderived soils showed elevated and deviating foliar Cd and Znconcentrations (>7.5 mg Cd kg-1 DW and 320 mg Zn kg-1 DW). A thin unpolluted covering layer did not influence foliarconcentrations. Regardless of site characteristics, poplarage, species or clone, a significant positive relation wasfound between soil and foliar concentration for Zn and to alesser extent for Cd. Bioconcentration factors for Cd and Znwere higher than one in baseline situations, but mostly lowerthan one on polluted sediment-derived soils. Cd:Zn ratio wason the average twice as high as in the soil. Leaf beetlesshowed normal body concentrations for Zn, but higher Cdconcentrations than in reference situations. BCFs were lowerthan one on sediment-derived soils. Foliar results indicateda possible threat in long-term habitat development of poplarplantations. This conclusion was confirmed by the significanthigher Cd concentrations in leaf beetles grown on poplarswith deviant foliar concentrations. However, litterdecomposition rates were generally evaluated as normal.  相似文献   

4.
High selenium (Se) concentrations have been found in surface waters in the Kendrick Reclamation Project, Wyoming. Precipitation and irrigation water moving over seleniferous soils are contributing causes, and drought may exacerbate this. This study surveyed Se concentrations and discharges in local surface streams, irrigation drains, and the delivery canal. Sites were sampled monthly and analyzed for Se and total suspended solids (TSS). A completely randomized design with two factors (soil parent material and location, inside or outside irrigation district) was used. Mean Se concentrations were 64 μg L???1 inside the irrigation district on shale soils, 17 μg L???1 inside the district off shale soils, 5 μg L???1 outside the district on shale soils, and 3 μg L???1 outside the district off shale soils. Correlations between discharge and Se concentrations were generally negative, while correlations between discharge and Se load were generally positive. There was little correlation between load and concentration, and little correlation between TSS and Se. A comparison of Se concentrations in streams and drains showed Se concentrations were significantly higher (p?<?0.001) in streams during the irrigation season, but not in the off-season (p?=?0.515). We conclude that higher discharges decrease Se concentration, but increase load. Conversion from flood to sprinkle irrigation may increase Se concentrations by reducing discharge, but decrease Se loads going into the N. Platte River, and will likely alter the timing and magnitude of flows. Both load and concentration should be considered when implementing Se regulations and standards.  相似文献   

5.
Bulk precipitation samples at Mumbai (India) were collectedduring the monsoon seasons of 1991 to 1996 and analysed forionic concentrations using an Ion Chromatograph DIONEX model100. The variability of sulphate to nitrate ratio in rainwaterfluctuates in a wide range from 1.5 to 20 and governed by thesulphate concentrations in the sample. The regression analysisof the data reveals that in the bulk precipitation at Mumbai, SO4 2- is becoming increasingly important relative toNO3 -. The role of meteorological influences onscavenging of air pollutants by rain water has been tried toexplain the phenomena. The computed wet deposition rates for Sand N during 1991–1996 show that the S deposition is higherthan N in all the years. There is a wide fluctuation indeposition rates of S ranging from 2 to 55 kg km2 per annum.  相似文献   

6.
The objective of this study was to determine the size and composition of atmospheric aerosols in the downtown area of the city of S?o Paulo, Brazil, for a polluted and an unpolluted period. Aerosols were sampled with a portable air sampler (PAS), Micro-Orifice Uniform Deposit Impactor (MOUDI), and Scanning Mobility Particle Sizer. At the study site, air quality is poor, especially during the winter, high concentrations of pollutants being emitted primarily by the light- and heavy-duty vehicle fleet. We analyzed mass, black carbon (BC), Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sn, Zr, and Pb. During the polluted period, diurnal PM10 was higher than nocturnal PM10, whereas the inverse was true during the unpolluted period. The FPM was rich in BC, S, and Pb, whereas CPM was rich in Al, Si, Ca, Ti, and Fe. Mass balance was performed by category: ammonium sulfate, sodium chloride, crustal material, BC, and other. The PAS-determined FPM was mainly BC. The MOUDI-determined FPM crustal material explained more mass than did ammonium sulfate and BC during the polluted period, whereas ammonium sulfate had the largest mass during the unpolluted period. Crustal material was the major CPM component, followed by ammonium sulfate and BC. During the unpolluted period, FPM concentrations were lower, whereas those of ammonium sulfate were relatively higher, especially at night, and particle number was inversely proportional to particle size. Aerosol growth was more intense during the polluted period.  相似文献   

7.
The study analysed the content of heavy metals in surface soil and sediment samples from the Bregu i Matit Plain in NW Albania in relation to irrigation in order to evaluate the soil pollution and the potential risk to human health. Evaluation of soil pollution was performed using the enrichment factor and geo-accumulation index. Contents of cadmium, chromium and nickel of irrigated soils were significantly higher than those of non-irrigated soil, while contents of lead (in three of the irrigated locations), zinc and arsenic (in one of the irrigated locations) were significantly lower. Correlation analysis (CA) and principal component analysis (PCA) indicated that the primary source of the first three metals was irrigation, and the last three metals were originated from other anthropic sources, like the use of chemicals, etc. Enrichment factor (E f) calculation showed that irrigated soils were most enriched in cadmium, chromium, copper and nickel. Index of geo-accumulation (I geo) revealed that arable soils of Bregu i Matit are unpolluted to moderately polluted with cadmium, chromium, copper and zinc and moderately to strongly polluted with nickel and arsenic. The presence of heavy metals in the studied soils indicates a potential risk of transfer of these elements in the food chain. Therefore, further studies on the speciation of heavy metals in the studied soils in order to evaluate their mobility are needed.  相似文献   

8.
The study focuses on assessing the status of respiratory morbidity in Delhi over a four years period from 2000–2003. An attempt was made to investigate the role of important pollutants (SO2, NO2, SPM and RSPM) and various meteorological factors (temperature minimum & maximum, relative humidity at 0830 and 1730 hrs. and wind speed) in being responsible for respiratory admissions on account of COPD, asthma and emphysema. The study showed that winter months had greater exposure risk as pollutants often get trapped in the lower layers of atmosphere resulting in high concentrations. Statistical analysis revealed that two pollutants have significant positive correlation with the number of COPD cases viz., SPM (r = 0.474; p < 0.01) and RSPM (r = 0.353; p < 0.05), while a meteorological factor temperature (minimum) has a significant negative correlation (r = −0.318; p < 0.05) with COPD. Stepwise multiple regression analysis was performed for COPD as dependent variable and R2 value of 0.33 was obtained indicating that SPM and RH(1730) were able to explain 33 percent variability in COPD. The partial correlation of SPM and RH(1730) on COPD was higher than any other combination and therefore they can be regarded as important contributing variables on COPD.  相似文献   

9.
The aim of this study was to determine the concentrations of nickel and cadmium in blood plasma of the people exposed to cement dust emissions and to investigate the effects of exposure period on the activities of Na+/K+ ATPase enzymes in their erythrocyte membranes. The study was carried out on people living in Eskiehir Çukurhisar rural area, located near a cement factory. Blood samples of the individuals residing in this area were taken from 80subjects (30 for control) following a physical examination. The analysis of plasma samples showed that nickel concentrations in subject group were found to be significantly higher than those of the control group (p < 0.001). Cadmium concentrations were found to be within the reference values for both group and no difference was found between the subjects and controls (p > 0.05). Furthermore, no correlation was observed between the levels of Na+/K+ ATPase activity in erythrocyte membranes of the subject group and the ages of people living in the region (p > 0.05, r = 0.133). It was also observed that nickel concentrations increased by age (p < 0.001, r = 0.646) while no effect was observed in means of cadmium. Na+/K+ ATPase activities in the erythrocyte membranes were not affected.In conclusion although there was no difference between the Na+/K+ ATPase activity in means of age, there was an environmental pollution and may be it was due to the industrial plant.  相似文献   

10.
Horizontal and profile distributions of nitrogen in marsh soils in different seasons were studied in a typical site within the Erbaifangzi wetland in Northeast China. Results showed that there was higher spatial heterogeneity for nitrate nitrogen (NO3--_{3}^{-}-N) and ammonium nitrogen (NH4+_{4}^{+}–N), as well as available nitrogen (AN), in surface soils in July compared to that in September. Relative to July, the mean nitrogen contents in surface soils were slightly higher in September; however, in November, soils contained significantly lower NO3--_{3}^{-}-N and NH4+_{4}^{+}–N, higher AN, organic nitrogen (Org-N), and total nitrogen (TN). Except for mineral nitrogen, no significant differences were observed between Org-N and TN contents in September and November. Nitrogen contents generally declined exponentially with depth along soil profiles in three sampling dates (July, September, and November), except for a significant accumulation peak of NO3--_{3}^{-}-N at the 20–30 cm depth in September. However, NH4+_{4}^{+}–N contents showed a vertical alternation of “increasing and decreasing” in both July and September, while nearly kept constant with depth in November. The depth ranking of nitrogen showed the shallowest distribution for AN, followed by Org-N and TN, while deeper distributions for NO3--_{3}^{-}-N and NH4+_{4}^{+}–N. TN, Org-N, and AN were significantly correlated with soil organic matter and total phosphorus. Soil pH values were significantly correlated with TN and AN contents in surface soils. Clay contents showed significant correlations with nitrogen contents except for NO3--_{3}^{-}-N in surface soils and NH4+_{4}^{+}–N in profile soils. However, soil moisture was not significantly correlated with nitrogen contents among all soil samples.  相似文献   

11.
The technique of diffusive gradients in thin film (DGT) has been shown to be a promising tool to assess zinc (Zn) bioavailability in soils, but there exists considerable debate on its suitability. In this study, Zn bioavailability was systematically investigated in wheat- and maize-grown soils using this technique and seven traditional methods, including soil solution concentration and six widely used single-step extraction methods (HAc, EDTA, NaAc, NH4Ac, CaCl2, and MgCl2). The concentrations of Zn in the shoots and roots of these two plant species increased continuously with increasing additions of Zn to the soils, accompanied by significant decreases in shoot biomass and root biomass at Zn concentrations greater than 400 mg kg?1 for maize and 800 mg kg?1 for wheat. Zinc uptake and accumulation was higher in maize roots than in wheat roots. Both the concentrations of bioavailable Zn measured by DGT (C DGT) and soil solutions (C sol) increased linearly with increasing additions of Zn to the soils, while no strong linear relationships were observed for the extraction methods. Higher concentrations of extractable Zn, lower values of C sol, and larger values of R (i.e., the ratio of C DGT to C sol) were observed in maize-grown soils compared with those of wheat-grown soils, while the values of C DGT between the two plants were similar. These findings demonstrate that there likely exists a stronger resupply of Zn from the soil solid phases in maize-grown soils to satisfy a higher Zn uptake and accumulation in this plant. Linear correlation analyses showed that C DGT had the highest correlation coefficients with plant Zn concentrations compared with other traditional methods, implying that the DGT technique is more sensitive and robust in reflecting Zn bioavailability in soils to plants.  相似文献   

12.
Polluted soils from Eneka oil field in the Niger delta region of Nigeria were collected two months after recorded incidence of oil spillage as part of a two-site reclamation programme. The soils were taken on the second day of reconnaissance from three replicate quadrats, at surface (0–15 cm) and subsurface (15–30 cm) depths, using the grid sampling technique. Total extractable hydrocarbon content (THC) of the polluted soils ranged from 1.006×103–5.540× 104 mg/kg at surface and subsurface depths (no overlap in Standard Errors at 95% Confidence Level). Greenhouse trials for possible reclamation were later carried out using (NH4)2SO4, KH2PO4 and KCl (N-P-K) fertilizer as nutrient supplements. Nitrogen as NO3-N and potassium were optimally enhanced at 2% (w/w) and 3% (w/w) of the N-P-K supplementation respectively. Phosphorus, which was inherently more enhanced in the soils than the other nutrients, maintained same level impact after 20 g treatment with the N-P-K fertilizer. Total organic carbon (%TOC), total organic matter (%TOM), pH and % moisture content all provided evidence of enhanced mineralization in the fertilizer treated soils. If reclamation of the crude oil inundated soils is construed as the return to normal levels of metabolic activities of the soils, then the application of the inorganic fertilizers at such prescribed levels would duly accelerate the remediation process. This would be, however, limited to levels of pollution empirically defined by such THC values obtained in this study. The data on the molecular compositional changes of the total petroleum hydrocarbon content (TPH) of the spilled-oil showed the depletion of the fingerprints of the n-paraffins, nC8nC10, and complete disappearance of C12–C17 as well as the acyclic isoprenoid, pristane, all of which provided substantial evidence of degradation.  相似文献   

13.
Cadmium, copper, manganese, lead and zinc concentrations were determined in water, periphytonic algae, detritus, and larvae of three aquatic insects, viz. Baetis sp. (Ephemeroptera: Baetidae), Hydropsyche sp. (Trichoptera: Hydropsychiidae), and Chironomus ramosus Choudhury and Das (Diptera: Chironomidae), during two surveys from an unpolluted and a polluted stream in Shillong, Meghalaya State, Northeastern India. Metal concentrations were higher in all the samples from the polluted stream, possibly reflecting the contributions from various non-point sources of metal contamination present in its catchment. Among the three insects, Baetis sp. was found to accumulate cadmium, copper, and zinc, and Hydropsyche sp. manganese, to concentrations significantly higher than those found in the other taxa. The concentrations of all the metals were higher in fine detritus than in C. ramosus, although Cd and Zn concentrations were elevated in Baetis as compared to those in periphytonic algae and fine detritus, indicating possible bioconcentration of these metals by this animal.  相似文献   

14.
15.
The purpose of this study was to predict quantitative changes in evaporation from bare soils in the Mediterranean climate region of Turkey in response to the projections of a regional climate model developed in Japan (hereafter RCM). Daily RCM data for the estimation of reference evapotranspiration (ET r) and soil evaporation were obtained for the periods of 1994–2003 and 2070–2079. Potential evaporation (E p) from bare soils was calculated using the Penman–Monteith equation with a surface resistance of zero. Simulation of actual soil evaporation (E a) was carried out using Aydin model (Aydin et al., Ecological Modelling 182:91–105, 2005) combined with Aydin and Uygur (2006, A model for estimating soil water potential of bare fields. In Proceedings of the 18th International Soil Meeting (ISM) on Soils Sustaining Life on Earth, Managing Soil and Technology, Sanliurfa, 477–480pp.) model of predicting soil water potential at the top surface layer of a bare soil, after performances of Aydin model (R 2 = 94.0%) and Aydin and Uygur model (R 2 = 97.6) were tested. The latter model is based on the relations among potential soil evaporation, hydraulic diffusivity, and soil wetness, with some simplified assumptions. Input parameters of the model are simple and easily obtainable such as climatic parameters used to compute the potential soil evaporation, average diffusivity for the drying soil, and volumetric water content at field capacity. The combination of Aydin and Aydin and Uygur models appeared to be useful in estimating water potential of soils and E a from bare soils, with only a few parameters. Unlike ET r and E p projected to increase by 92 and 69 mm (equivalent to 8.0 and 7.3% increases) due to the elevated evaporative demand of the atmosphere, respectively, E a from bare soils is projected to reduce by 50 mm (equivalent to a 16.5% decrease) in response to a decrease in rainfall by 46% in the Mediterranean region of Turkey by the 2070s predicted by RCM, and consequently, to decreased soil wetness in the future.  相似文献   

16.
The fertigation effect of distillery effluents concentrations such as 5%, 10%, 25%, 50%, 75% and 100% were studied on Trigonella foenu-graecu (Pusa early bunching) along with control (bore well water). On irrigation of soil with different effluents up to 90 days of harvesting, it was observed that there was a significant effect on moisture content (P < 0.001), EC, pH, Cl − , total organic carbon (TOC), HCO3-_{3}^{-}, CO3-2_{3}^{-2}, Na + , K + , Ca2 + , Mg2 + , Fe2 + , TKN, NO32-_{3}^{2-}, PO43-_{4}^{3-}, and SO42-_{4}^{2-} (P < 0.0001) and insignificant effect on WHC and bulk density (P > 0.05).There was no significant change in the soil texture of the soil. Among various concentrations of effluent irrigation, the irrigation with 100% effluent concentration decreased pH (16.66%) and increased moisture content (30.82%), EC(84.13%), Cl −  (292.37%), TOC (4311.61%), HCO3-_{3}^{-} (27.76%), CO3-2_{3}^{-2} (32.63%), Na +  (273%), K +  (31.59%), Ca2 +  (729.76%), Mg2 +  (740.47%), TKN (1723.32%), NO32-_{3}^{2-} (98.02%), PO43-_{4}^{3-} (337.79%), and SO42-_{4}^{2-} (77.78%), Fe2 +  (359.91%), Zn (980.48%), Cu (451.51%), Cd (3033.33%), Pb (2350.00%), and Cr (2375.00%) in the soil. The agronomical parameters such as shoot length, root length, number of leaves, flowers, pods, dry weight, chlorophyll content, LAI, crop yield, and HI of T. foenum-graecum were recorded to be in increasing order at low concentration of the effluent, i.e., from 5% to 50% and in decreasing order at higher effluent concentration, i.e., from 75% to 100% as compared to control. The enrichment factor of various heavy metals was ordered for soil Cd>Cr> Pb>Zn>Cu>Fe and for T. foenum-graecum plants Pb>Cr>Cd>Cu>Zn>Fe after irrigation with distillery effluent.  相似文献   

17.
The suitability of Mazzaella laminarioides and Sarcothalia crispata as heavy metal biomonitors of Cd, Cu, Hg, Pb, and Zn was assessed by comparing bioaccumulation of these elements in different life stages and frond sizes in samples from three locations, San Vicente Bay (industrial area), Coliumo, and Quidico (the latter as a reference station), where different degrees of heavy metal pollution are recorded. Bioaccumulation and bioconcentration factors of Cd, Cu, Hg, Pb, and Zn were evaluated. The two macroalgae species showed similar patterns, with higher values of Cu, Hg, Pb, and Zn in polluted areas. M. laminarioides bioaccumulated higher concentrations of all metals assessed than S. crispata, independent of life stage and frond size. The results also showed significantly higher Cu, Hg, Pb, and Zn concentrations (p < 0.05) in water samples from San Vicente Bay than those measured in Coliumo and Quidico. Concentrations of Cd, Hg, Pb, and Zn in San Vicente Bay and Cd, Hg, and Pb in Coliumo and Quidico exceed the mean values considered to represent natural concentrations (Cu = 3.00 μg L?1; Zn = 5.00 μg L?1; Pb = 0.03 μg L?1; Cd = 0.05 μg L?1; Hg = 0.05 μg L?1); however, the concentrations recorded do not cause negative effects on the growth and survival of macroalgae. The assessment of heavy metals bioaccumulated in M. laminarioides and S. crispata, particularly Hg, Pb, and Zn, offers a reliable approach for pollution assessment in rocky intertidal environments. Cu and Cd concentrations in seawater samples from San Vicente and Coliumo Bays were significantly higher than in those from Quidico (p value < 0.05); no significant differences in Cd concentrations were observed between San Vicente and Coliumo Bays (p < 0.05). Exceptionally, Cd is bioaccumulated at high levels independent of its availability in the water, thus reaching high concentrations in control areas. High concentrations of metals like Cu and Zn may limit or inhibit Cd uptake in macroalgae, since the transport channels are saturated by some metals, reducing the accumulation of others. These macroalgae species offer good potential for the development of suitable heavy metal pollution survey tools in rocky intertidal environments.  相似文献   

18.
The study assesses the ecological impact caused by the El Salvador untreated (1975–1990) and treated (1991–1994) copper mine tailings on rocky intertidal communities in and around the dumping site at Caleta Palito, northern Chile. Ecological changes are monitored for 16 years in polluted and unpolluted sites within a geographical area of 90 km. Copper concentration levels in water and the intertidal Chlorophyta E. compressa are presented. The results confirm a notorious reduction in the number of species and significant differences between polluted and unpolluted intertidal communities. At polluted sites, following the initiation of the disposal, all species of invertebrates and algae disappeared and primary space (rock) was partially or completely dominated by E. compressa along more than a decade. Its persistence in these sites supports the view that this taxon is a sentinel species resisting high levels of copper pollution. During the past four years, following the steps given to treat the tailings, at polluted sites there are preliminary indications showing increases in the number of species of algae and invertebrate. The need for future monitoring to elucidate ecosystem restoration processes is discussed.  相似文献   

19.
Mixtures of polycyclic aromatic hydrocarbons (PAHs) and heavy metals are of major concern in contaminated soil. Biodegradation of PAHs in metal-contaminated soils is complicated because metals are toxic and cannot be degraded by biological processes. This investigation considered the effects of Zn and Cu (50, 100, 500 and 1,000 mg/kg) on 14C-phenanthrene biodegradation in soil over 60-day contact time. The presence of Zn at all concentrations and low concentrations of Cu (50 and 100 mg/kg) had no significant effect (p?>?0.05) on the development of phenanthrene catabolism; however, at higher Cu concentrations, the development of phenanthrene catabolism and bacterial cell numbers were significantly reduced (p?<?0.05). This suggests that Cu is more toxic than Zn to soil microbial PAH catabolic activity. Metal/PAH-contaminated soils represent one of the most difficult remedial challenges and insights into PAH biodegradation in the presence of metals is necessary in order to assess the potential for bioremediation.  相似文献   

20.
Two new methods for assessing temporal trends in stream-solute concentrations at specific streamflow ranges were applied to long (40 to 50-year) but sparse (bi-weekly to quarterly sampling) stream-water quality data collected at three forested mesoscale basins along an atmospheric deposition gradient in the northeastern United States (one in north-central Pennsylvania, one in southeastern New York, and one in eastern Maine). The three data sets span the period since the implementation of the Clean Air Act in 1970 and its subsequent amendments.Declining sulfate (O 4 2-) trends since the mid 1960s were identified for all 3 rivers by one or more of the 4 methods of trend detection used. Flow-specific trends were assessed by segmenting the data sets into 3-year and 6-year blocks, then determining concentration-discharge relationships for each block. Declining sulfate (O 4 2-) trends at median flow were similar to trends determined using a Seasonal Kendall Tau test and Sen slope estimator. The trend of declining O 4 2- concentrations differed at high, median and low flow since the mid 1980s at YWC and NR, and at high and low flow at WR, but the trends leveled or reversed at high flow from 1999 through 2002. Trends for the period of record at high flows were similar to medium- and low-flow trends for Ca2++ Mg2+ concentrations at WR, non-significant at YWC, and were more negative at low flow than at high flow at NR; trends in nitrate (NO3 -), and alkalinity (ALK) concentrations were different at different flow conditions, and in ways that are consistent with the hydrology and deposition history at each watershed. Quarterly sampling is adequate for assessing average-flow trends in the chemical parameters assessed over long time periods (∼decades). However, with even a modest effort at sampling a range of flow conditions within each year, trends at specified flows for constituents with strong concentration-discharge relationships can be evaluated and may allow early detection of ecosystem response to climate change and pollution management strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号