首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil amendment by phosphogypsum (PG) application becomes of increasing importance in agriculture. This may lead, however, to soil, plant, and groundwater contamination with trace elements (TEs) inherently present in PG. Monitoring of selected TEs (Pb, Zn, Cu, and Cd) distribution and mobility in a Mediterranean red soil profile has been performed in soil parcels applied with PG over a 16-month period. Concentrations were measured in soil and plant samples collected from various depth intervals at different points in time. TEs sequential extraction was performed on soil and PG samples. Results showed soil profile enrichment peaked 5 months after PG application for Cd, and 12 months for Pb, Zn, and Cu. Rainwater, pH, total organic carbon, and cationic exchange capacity were the main controlling factors in TEs accumulation in soils. Cd was transferred to a soil depth of about 20 cm. Zn exhibited mobility towards deeper layers. Pb and Cu were accumulated in around 20-55-cm-deep layers. PG increased the solubility of the studied TEs; PG-applied soils contained TEs bound to exchangeable and acid-soluble fractions in higher percentages than reference soil. Pb, Zn, and Cu were sorbed into mineral soil phases, while Cd was mainly found in the exchangeable (bio-available) form. The order of TEs decreasing mobility was Zn > Cd > Pb > Cu. Roots and leaves of existed plants, Cichorium intybus L., accumulated high concentrations of Cd (1-2.4 mg/kg), exceeding recommended tolerable levels, and thus signifying potential health threats through contaminated crops. It was therefore recommended that PG should be applied in carefully established, monitored, and controlled quantities to agricultural soils.  相似文献   

2.
Total concentrations of Al, Cu, Fe, Hg, Mn, Mo and Zn in theepiphytic lichen Parmelia caperata, substrate bark andleaves of oaks (Quercus cerris and Q. pubescens)from a background area in Tuscany (central Italy) werecompared. The elemental composition of unwashed samples,especially bark, was clearly affected by soil dustcontamination, thereby leading to incorrect interpretations ofbaseline concentrations and relationships between elements.The normalization of total element concentrations to thesurface soil composition (digested and analyzed by the sameprocedures), using Al as reference element, gave more reliablebaseline values and allowed comparison between differentbiomonitors. The suitability of lichens, leaves and barks forstudying the environmental distribution of trace elements interrestrial ecosystems is discussed.  相似文献   

3.
Flow field flow fractionation (FlFFF) in combination with inductively coupled plasma mass spectrometry (ICP-MS) was used to study the chemical speciation of U and trace metals in depleted uranium (DU) contaminated soils. A chemical extraction procedure using sodium pyrophosphate, followed by isolation of humic and fulvic substances was applied to two dissimilar DU contaminated sample types (a sandy soil and a clay-rich soil), in addition to a control soil. The sodium pyrophosphate fractions of the firing range soils (Eskmeals and Kirkcudbright) were found to contain over 50% of the total U (measured after aqua regia digestion), compared to approximately 10% for the control soil. This implies that the soils from the contaminated sites contained a large proportion of the U within more easily mobile soil fractions. Humic and fulvic acid fractions each gave characteristic peak maxima for analytes of interest (Mn, Fe, Cu, Zn, Pb and U), with the fulvic acid fraction eluting at a smaller diameter (approximately 2.1 nm on average) than the humic fraction (approximately 2.4 nm on average). DU in the fulvic acid fraction gave a bimodal peak, not apparent for other trace elements investigated, including natural U. This implies that DU interacts with the fulvic acid fraction in a different way to all other elements studied.  相似文献   

4.
Total concentrations of Al, Ba, Cd, Co, Cr, Cu, Fe, Mn, Mo, Pb, Sr, Ti, V and Zn in the epiphytic lichen Parmelia sulcata and superficial soils from 60 remote sampling sites in Tuscany (central Italy) were determined to evaluate the contribution of soil to the elemental composition of the lichen. The results showed that in the Mediterranean environment, the trace element content of unwashed lichen samples is greatly affected by soil contamination. However, despite the strong correlations between the concentrations of lithogene elements such as Al, Fe and Ti in P. sulcata, lichen levels of these elements were not at all linearly correlated with their concentrations in the soil, suggesting that dust contamination is highly variable and probably dependent on local site characteristics. All methods evaluated to minimize soil contamination indicated Cu, Pb and Zn as elements of atmospheric origin. However, while levels of Pb were similar to those reported for background areas, moderate pollution by Cu and Zn, probably from fertilizers used in agriculture, was revealed. For elements such as Cd and Mo, identified as atmophile, some uncertainty exists due to the fact that they are essential for lichen metabolism and accumulate intracellularly in lichens; they may therefore occur in soluble form in the lichen thallus.  相似文献   

5.
A comparison of two systems for the quantitation of metal-humic complexes and free metal ions, consisting of the separation by coupled ion exchange columns followed by detection by inductively coupled plasma mass spectrometry or cold vapour atomic fluorescence spectrometry, is presented. The systems evaluated comprised the serially coupled anion and cation exchangers, Sephadex A-25/Chelex 100 and Dowex 1X8/Chelamine Metalfix. Separation and preconcentration of the species studied were accomplished with both systems, elution being carried out using 2 M HNO3. Total concentrations, metal-humic complex fractions and free metal ion fractions of Al, Ba, Cd, Co, Cu, Fe, Hg, Mn, Pb, Sr, U and Zn in nine natural waters were determined. Statistical evaluation of the data from the two cation exchange materials, including results for additional elements, showed better precision (for Al, Ba, Cr, Cu and Mo) and higher recoveries (Al, Ba, Cd, Fe, Sr and Zn) for Chelex 100 than Chelamine Metalfix for free metal ions. On the other hand, Chelamine Metalfix recovered a significantly greater amount of Ni. The amounts of metal-humic complexes were compared with modelled distributions of these species, and one advantage of the preferred Sephadex A-25/Chelex 100 system is that the elements studied are all correctly classified with respect to their binding strengths to humic substances, which is not the case with the Dowex 1X8/Chelamine Metalfix pair. With the preferred system, metal-humic complexes can be reliably determined, as indicated by the results of equilibrium speciation modelling. However, comparison with the total concentrations showed statistically significant, non-quantitative recoveries of Al, Cu, Hg, Mn, U and Zn from some samples. Thus a combination of speciation and total concentration measurements is required to obtain a complete representation of the distribution of trace elements in natural waters.  相似文献   

6.
Trace element impact was assessed using mosses in a densely inhabited area affected by mud volcanoes. Such volcanoes, locally called Salinelle, are phenomena that occur around Mt. Etna (Sicily, Italy) and are interpreted as the surface outflow of a hydrothermal system located below Mt. Etna, releasing sedimentary fluids (hydrocarbons and NaCl brines) along with magmatic gases (mainly CO(2) and He). To date, scarce data are available about the presence of trace elements, and no biomonitoring campaigns are reported about the cumulative effects of such emissions. In this study, concentrations of Al, As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, V, and Zn were detected in the moss Bryum argenteum, in soil and water. Results showed that the trace element contribution of the Salinelle to the general pollution was significant for Al, Mn, Ni, and Zn. The comparison of trace concentrations in mosses from Salinelle and Etna showed that the mud volcanoes release a greater amount of Al and Mn, whereas similar values of Ni were found. Natural emissions of trace elements could be hazardous in human settlements, in particular, the Salinelle seem to play an important role in environmental pollution.  相似文献   

7.
The aims of this study were to determine the contents of cadmium (Cd), copper (Cu), lead (Pb), zinc (Zn), aluminium (Al), and iron (Fe) (aqua regia-extractable) in 27 soil plots (54 samples) from Manresa, NE Spain, and to establish relationships between heavy metals and some soil properties. The main soil types were surveyed and the median concentrations (mg kg(-1)) obtained were Cd 0.28, Cu 20.3, Pb 18.6, Zn 67.4, Al 22,572, and Fe 21,551. Element concentrations for these soils were lower than the published values for the Valencia region (Spain) and Torrelles and Sant Climent municipal districts (Catalonia, Spain). In terms of soil properties, the results of this study suggest that, in Manresa soils, both trace element adsorption and retention are influenced by several properties such as clay minerals, carbonates, organic matter, and pH. All element contents were positively correlated with clay content. Pb and Zn were negatively correlated with pH and CaCO(3).  相似文献   

8.
Airborne particulate trace metals have important health implications. As a consequence, their concentrations are increasingly monitored in many urban locations worldwide. In this study, fine atmospheric particles (PM(2.5)) were collected in Singapore over a period of 83 consecutive days during 2000, and analysed to determine the concentration of trace elements using ICP-MS. Altogether, eighteen airborne trace metals were quantified: Al, Ag, Ba, Cd, Cr, Co, Cu, Fe, Ga, Li, Mn, Ni, Pb, Sr, Zn, V, Si, and Ti. While Li was the least abundant trace metal with a mean concentration of 0.2 ng m(-3), Zn showed the maximum mean concentration of 279.1 ng m(-3). Calculation of enrichment factors indicated that the elements Pb, Zn, Cd, V, Ni, Cr, and Cu were enriched by factors of 30 to 5000 relative to their natural abundance in crustal soil. The extent of metal pollution in the study area was assessed by comparing the measured concentrations to those reported in the literature for a selected number of urban sites in other parts of the world. Factor analysis was used to identify the major sources affecting particulate air pollution in Singapore. The sources that contribute to the loading of trace metal-bearing aerosols in the Singapore urban atmosphere include fuel oil-fired power plants, metal processing industry, land reclamation and construction activities, municipal solid waste incinerators, and traffic emissions.  相似文献   

9.
The distribution and accumulation of heavy metals (Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Mo, Cd, Sn, Ba, Pb) in the water, sediments, plankton of Yeniça?a Lake, and its potential sources (creeks, sewage, artesian well, soil) were investigated during 1-year study period as monthly or seasonally. Element analyses were performed by ICP–MS. Results showed that the trace and toxic elements (Al, As, Mn, Pb, Fe) concentration in lake water and/or its feeding sources were above the recommended water standards (WHO, EC, EPA, TS-266). It was found that the maximum accumulation of the heavy metals iron, aluminum, manganese, zinc, and barium in the sediment of Yeniça?a Lake. The accumulation order of trace metals were Fe > Al > Mn > Zn > Ba > Ni > Cr > As > Cu > Pb > Co > Mo > Sn > Cd in the lake, creeks sediment, and soil samples. The similar results suggest that the accumulation of heavy metals in the sediment is a natural process. Metals accumulated in the lake are naturally mixed from the soil. However, the presence of heavy metals in the analysis of artesian well water and sewage reveals that the transportation occurs also from the groundwater to the lake. The results obtained in plankton in Yeniça?a Lake showed that aluminum, iron, manganese, zinc, and barium were most accumulated elements in the plankton. The lower averages of lead prevalent in the water and sediment during some months were seen to have a significant mean accumulation in the plankton.  相似文献   

10.
Coastal and estuarine areas are often polluted by heavy metals that result from industrial production and agricultural activities. In this study, we investigated the concentration trait and vertical pattern of trace elements, such as As, Cd, Ni, Zn, Pb, Cu, and Cr, and the relationship between those trace elements and the soil properties in coastal wetlands using 28 profiles that were surveyed across the Diaokouhe Nature Reserve (DKHNR). The goal of this study is to investigate profile distribution characteristics of heavy metals in different wetland types and their variations with the soil depth to assess heavy metal pollution using pollution indices and to identify the pollution sources using multivariate analysis and sediment quality guidelines. Principal component analysis, cluster analysis, and pollution level indices were applied to evaluate the contamination conditions due to wetland degradation. The findings indicated that the concentration of trace elements decreased with the soil depth, while Cd increases with soil depth. The As concentrations in reed swamps and Suaeda heteroptera surface layers were slightly higher than those in other land use types. All six heavy metals, i.e., Ni, Cu, As, Zn, Cr, and Pb, were strongly associated with PC1 (positive loading) and could reflect the contribution of natural geological sources of metals into the coastal sediments. PC2 is highly associated with Cd and could represent anthropogenic sources of metal pollution. Most of the heavy metals exhibited significant positive correlations with total concentrations; however, no significant correlations were observed between them and the soil salt and soil organic carbon. Soil organic carbon exhibited a positive linear relationship with Cu, Pb, and Zn in the first soil layer (0–20 cm); As, Cr, Cu, Ni, Pb, and Zn in the second layer (20–40 cm); and As, Cr, Cu, Ni, Pb, and Zn in the third layer (40–60 cm). Soil organic carbon exhibited only a negative correlation with Cd (P?I geo values), which averaged less than 0 in the three soil layers, this finding indicates that the soils have remained unpolluted by these heavy metals. The mean concentrations of these trace elements were lower than Class I criteria. The degradation wetland restoration suggestions have also been provided in such a way as to restore the reserved flow path of the Yellow River. The results that are associated with trace element contamination would be helpful in providing scientific directions to restore wetlands across the world.  相似文献   

11.
Anthropogenic sources of pollution can significantly contribute to elevated concentrations of toxic elements in soils. A preliminary survey of trace elements content and their availability in residential soils from New Madrid County, Missouri was undertaken. Mean elemental concentrations (mg kg−1, dry wt) of sixty two soil samples were: As 6.6, Be 0.8, Cd 1.6, Co 9.7, Cr 24.5, Cu 18.1, Fe 9951, Mn 298, Ni 15.6, Pb 48.8, V 42.1, Zn 95.5 and Hg 0.05. The US EPA preliminary remediation goals (PRGs) was only exceeded by As (7 % of samples) and V (8% of samples). The Missouri average background values were exceeded by Pb (69%), Zn (31%), Cu (27%), As (23%), Be (19%), Co (18%), Ni (16%), V (8%) and Mn (2%). Crustal enrichments (EFc) for As (97), Cr (6), Cu (10), Pb (121), V (7), and Hg (17) were highest for North Lilbourn soils. Fractionation experiment revealed that Fe (54–79%) was in the residual phase while Zn (70–90%), Mn (88–92%), As (59–81%) and Pb (63–79%) were potentially available in soils. Factor loadings of the element concentrations on principal components 1, 2 and 3 accounted for over 81% variance of the data set. The factor loadings suggested that apart from natural contributions of trace elements to the soils, human activities possibly accounted for other inputs in soils.  相似文献   

12.
Nerium oleanderL. (Oleander) leaves grown in Palermo city (Sicily, Italy) were collected from six sampling sites representing either areas of high traff{i}c and urbanisation density or areas far away from traffic (e.g. city gardens). Concentration of Al, Ba, Cr, Cu, Fe, Pb, Mg, Mn, and Zn were determined in leaf samples during two years. Multivariate analysis classified the sampling sites in four groups based on the metal content in vegetal leaves in agreement with traffic and human activity site. Many elements studied (Al, Ba, Fe, Mn Mg) arise from the soil composition and others such as Cr, Cu, Pb and Zn as pollutant of the soil. On the other hand, about 30% of Al, Fe Cr, Cu and Pb originate from aerial deposition on leaves. Although the results presented should be handled with caution N. oleandercan be considered as a means of assessing dust contamination in the urban environment.  相似文献   

13.
The biomonitors Hypnum cupressiforme and Xanthoria parietina were used to assess the deposition of trace elements and their possible origin in the Prades Mountains, a protected Mediterranean forest area of NE Spain with several pollution sources nearby. Al, As, Cd, Co, Cu, Cr, Ni, Pb, Sb, Ti, V, and Zn were determined in 16 locations within this protected area. Soil trace element concentrations were also ascertained to calculate enrichment factors (EF) and use them to distinguish airborne from soilborne trace element inputs. In addition, lichen richness was measured to further assess atmospheric pollution. EF demonstrated to be useful not only for the moss but also for the lichen. Cd, Cr, Cu, Ni, and Zn presented values higher than three in both biomonitors. These trace elements were also the main ones emitted by the potential sources of pollutants. The distance between sampling locations and potential pollution sources was correlated with the concentrations of Cu, Sb, and Zn in the moss and with Cr, Ni, and Sb in the lichen. Lichen richness was negatively correlated with lichen Cu, Pb, and V concentrations on dry weight basis. The study reflected the remarkable influence that the pollution sources have on the presence of trace elements and on lichen species community composition in this natural area. The study highlights the value of combining the use of biomonitors, enrichment factors, and lichen diversity for pollution assessment to reach a better overview of both trace elements’ impact and the localization of their sources.  相似文献   

14.
Concentrations of trace elements (Cd, Cu, Ni, Pb, V, and Zn) were determined in the soft tissues (adductor muscle and gills) of the pearl oyster Pinctada radiata and surficial sediments from two sampling sites located in the northern part of the Persian Gulf by Graphite Furnace Atomic Absorption Spectrophotometer (GFAAS). Moreover, the levels of Li, Mg, Al, Mn, Fe, Cu, Sr, Ba, Pb, and Zn were measured in two shell layers (prismatic and nacreous) using Laser Ablation Inductively Coupled Plasma Mass Spectrometer (LA-ICP-MS). There were significant differences between the sampling sites with regard to mean concentrations of Cu, Mn, and Al in the prismatic layers of the shells. But in terms of the soft tissues, only in the case of Ni accumulation in the muscle significant differences between the sites could be observed. No significant differences could be found between the sites from the elements concentrations in the sediments point of view. The levels of Cd, Cu, Ni, and Zn in the gills were markedly higher than those in the muscle. Concentrations of Mn, Mg, Li, and Cu in the prismatic layer were significantly higher than in the nacreous but the reverse case could be found for Sr. The patterns of metal occurrence in the selected tissues, shell layers, and sediments exhibited the following descending order: Zn, Ni?>?Cd, Cu?>?V, and Pb and Zn, Ni, Cd?>?Cu, V, and Pb for muscle and gills, respectively; Zn?>?Cu, Ni, Pb, Cd, and V for sediments; Mg?>?Sr, Mn, Li, Al, Fe, Ba, Cu, Pb, and Zn for the prismatic layer; and Sr, Mg?>?Mn, Al, Fe, Li, Ba, Cu, Pb, and Zn for the nacreous layer. In most cases, the temporal variations of the elements levels in the prismatic layer were clearer than those in the nacreous layer (especially for Li, Mg, Mn, Pb, and Fe). Comparison of the gained data from this study with the other relevant researches shows that in most cases the levels of the elements in this investigation either fell within the range for other world areas or were lower. Generally, it can be concluded that the shell (especially prismatic layer) of P. radiata can be considered as a suitable proxy for temporal and spatial variations of the trace elements (and probably some environmental parameters) in the study area.  相似文献   

15.
Preliminary investigations were carried out in and around Medak and Sangareddy areas to study the baseline levels of ten major (Si, Al, Ca, Fe, K, Mg, Mn, Na, P, and Ti) and 14 trace elements (As, Ba, Co, Cr, Cu, Mo, Ni, Pb, Rb, Sr, V, Y, Zn, and Zr) on 97 representative soil samples comprising of topsoil (0–25 cm) and subsoil (90–115 cm). The data was factor analyzed for geochemical associations. Because varimax factor loading values show the best results, these were used in interpretation. The derived factors are usually interpreted as associations of elements that imply a common source or behavior in regard to geogenic or anthropogenic influences. It was found that the difference between topsoil and subsoil is not only expressed by concentration differences but also by element associations. Five factors were extracted in topsoil data and account for 80% of the total data variance, while seven factors were extracted in subsoil, which account for 88% of the total variance, suggesting that metal concentration was controlled by soil composition and also that, apart from natural contributions of trace elements to the soils, human activities like agriculture and industrial growth possibly accounted for elemental inputs in soils.  相似文献   

16.
In this paper, we surveyed the concentration of nine trace elements (As, Cd, Cu, Fe, Mn, Ni, Pb, Tl and Zn) in bermudagrass (Cynodon dactylon) 3 years after the mine spill in Aznalcóllar (south Spain). The results were compared with those that had been obtained for the same species in a previous study, 18 months after the accident. Three types of soil condition were determined: i) unaffected soils (UN, control); ii) cleaned up and amended soils (A, amended); and (iii) non-amended soils, inaccessible to the clean-up and remediation operations (NA, non-amended). The trace element concentrations in the plants were lower than those reported in the first sampling for both washed (plant tissues) and unwashed plants (as consumed by herbivores). Apart from Cd, trace elements concentrations (plant tissues) were similar in the A and the UN soils. In the NA soils, the Cd, Fe, Mn, Zn and Pb levels in unwashed plants were excessive for animal consumption. This wild grass seems to be suitable as a soil stabilizer for spill affected soils and as a biomonitor for soil pollution by some trace elements (As, Cu and Zn); however, its potential for phytoextraction is negligible.  相似文献   

17.
The observation from previous surveys, that Urtica dioica plants that had grown in metal contaminated soil in the floodplains of the former Rhine estuary in different habitats, but at comparable total soil metal concentrations, showed significant differences in tissue metal concentrations, led to the hypothesis that variation in other environmental characteristics than soil composition and chemical speciation of metals between habitats is also important in determining uptake and translocation of metals in plants. A field survey indicated that differences in root Cd, Cu and Zn concentrations might partly be explained by variation in speciation of metals in different habitats. However, shoot concentrations showed a different pattern that did not relate to variation in soil metal concentrations. In a habitat experiment Urtica dioica plants were grown in artificially contaminated soil in pots that were placed in the four habitats (grassland, pure reed, mixed reed, osier bed) that were also included in the field survey. After seven weeks the plants showed significant differences in Cu and Zn concentrations in roots and aboveground plant parts and in distribution of the metals in the plants between habitats. It was concluded that variation between habitats in environmental characteristics other than soil composition can explain as much variation in plants as can variation in soil metal concentrations and/or speciation. The implications for assessment of soil metal contamination and uptake by plants are discussed.  相似文献   

18.
Feathers, eggs, and excreta of Gentoo penguin (Pygoscelis papua ellsworthii), adults, from Livingston Island (South Shetlands), chosen as bioindicators, were used to test the quality of the Antarctic environment. Sex was not examined. The bioaccumulations of toxic trace elements (Cd, Pb, Al, and As), essential trace elements (Fe, Cu, Zn, Mn, Cr, V, Ni, and Sr), and major essential elements (Na, K, Mg, Ca, P, and S) were established. For the first time data about the element contents in Gentoo eggs is provided. Two hypotheses were tested: (1) there are differences in the metal levels among eggs and feathers; and (2) the element concentrations are highest in the excreta. The hypotheses were confirmed at 0.01-0.05 confidence levels. The concentrations of almost all trace elements were significantly higher in the feathers compared to those in the eggs. The following values of the concentrations ratio Fe/Zn were obtained: in the embryo, Fe/Zn = 1.5, and in the feathers, Fe/Zn = 0.5. The concentration of Pb in the embryo and excreta was below 0.4 μg/g, and Cd and As in eggs were below 0.05 and 0.3 μg/g, respectively. This indicates that there is no toxic risk for penguin offspring. Arsenic could be considered as a potential pollutant for Antarctic soil due to its relative high concentration in excreta, 5.13 μg/g. The present data (year 2007) were compared to the data for years 2002 and 2003. No trend of toxic element contamination was established. The concentrations of Pb, Cd, and As in representatives from the top of the food chain in the Antarctic (the present study) and Arctic (literature data) were compared. The data supports the hypothesis that there is an abnormality in cadmium levels in polar marine areas. Regarding Pb, the South Shetlands displayed 3-fold lower level compared to the Aleutians.  相似文献   

19.
Bioindicators are widely used in the study of trace elements inputs into the environment and great efforts have been conducted to separate atmospheric from soil borne inputs on biomass accumulation. Many monitoring studies of trace element pollution take into account the dust particles located in the plant surface plus the contents of the plant tissues. However, it is usually only the trace element content in the plant tissues that is relevant on plant health. Enrichment factor equations take into account the trace element enrichment of biomasses with respect soil or bedrocks by comparing the ratios of the trace element in question to a lithogenic element, usually Al. However, the enrichment equations currently in use are inadequate because they do not take into account the fact that Al (or whichever reference element) and the element in question may have different solubility-absorption-retention levels depending on the rock and soil types involved. This constrain will become critical when results from different sites are compared and so in this article we propose that the solubility factors of each element are taken into account in order to overcome this constrain. We analysed Sb, Co, Ni, Cr, Pb, Cd, Mn, V, Zn, Cu, As, Hg, and Al concentration in different zones of Catalonia (NE Spain) using the evergreen oak Quercus ilex and the moss Hypnum cupressiforme as target species. We compared the results obtained in rural and non industrial areas with those from the Barcelona Metropolitan Area. We observed differences in Al concentrations of soils and bedrocks at each different site, together with the differences in solubility between Al and the element in question, and a weak correlation between total soil content and water extract content through different sites for most trace elements. All these findings show the unsuitability of the current enrichment factors for calculating lithospheric and atmospheric contributions to trace element concentrations in biomass tissues. The trace element enrichment factors were calculated by subtracting the part predicted by substrate composition (deduced from water extracts from soils and bedrock) from total concentrations. Results showed that for most of the trace elements analysed, trace elements enrichment factors were higher inside the Barcelona Metropolitan Area than outside, a finding that indicates that greater atmospheric inputs occur in urban areas. The results show that the most useful and correct way of establishing a reference for lithospheric and atmospheric inputs into the plant tissues is, first, to analyse samples of the same plant species collected from a number of sites possessing similar environmental conditions (climate, vegetation type, soil type) and, second, to use this new enrichment factor obtained by subtracting from the total concentration in plant tissue the predicted contribution of soil or bedrock extracts instead of that of total soil or bedrock concentrations.  相似文献   

20.
A sequential extraction procedure was carried out to determinate the concentrations of 11 elements (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn) in different geochemical phases of sediments collected along the Hugli (Ganges) River Estuary and in the Sundarban mangrove wetland, eastern coastal part of India. The chemical speciation of elements was determined using the three-step sequential extraction procedure described by the European Community Bureau of Reference. Total metal concentration was determined using a microwave-assisted acid digestion procedure. Metal concentrations were near the background level except for As for which a moderate pollution can be hypothesized. The mobility order of the metals was: Cd?>?Mn?>?Cu?>?Zn?>?As?>?Co?>?Pb?>?Ni?>?Fe?>?Cr?>?Al. The highest percentage of Cd (>60%) was found in the most labile phase. Residual fraction was prevailing for Fe, Cr and Al, while Pb was mainly associated with the reducible fraction. Data were compared with Sediment Quality Guidelines to estimate the relationship between element concentrations and adverse biological effects on benthic community, finding the possibility of some toxic effects due to the presence of As in the entire studied area and Cd, only in Calcutta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号