首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
采用气相色谱-质谱联用仪定量分析2016年沈阳市PM_(2.5)中16种多环芳烃(PAHs)的质量浓度,探讨其时空分布特征,并解析PAHs的来源。结果表明:沈阳市PAHs的平均质量浓度为71. 5 ng/m3,其中3环、4环PAHs分别占31. 3%和48. 8%;采暖期PAHs浓度明显高于非采暖期,中心城区高于周边。总毒性当量浓度平均值为8. 05 ng/m3。特征比值法和主成分分析法解析的PAHs来源基本一致,主要为燃烧源、石油挥发源和工业生产源,贡献率分别为70. 11%、14. 19%和10. 74%。  相似文献   

2.
气象要素及前体物对青岛市臭氧浓度变化的影响   总被引:2,自引:2,他引:0  
在深入探讨2013—2015年青岛市区O_3污染随时间变化特征的基础上,系统分析了不同气象要素对O_3浓度的影响,并研究了前体物对O_3生成的影响及贡献。结果表明:青岛市区O_3第90百分位日最大8 h滑动平均值和超标率均在2014年达到最高值;O_3浓度在5—10月较高,12月至次年1月浓度最低;O_3日变化呈单峰型变化规律,白天浓度高,夜间浓度低。强太阳辐射、高温、相对湿度60%左右、风速4 m/s左右、偏南风等气象条件下易出现高浓度O_3。O_3的生成主要受前体物VOCs控制,且烯烃对O_3生成的贡献远高于烷烃和芳香烃,控制VOCs尤其是烯烃组分的排放可有效降低青岛市区O_3浓度。  相似文献   

3.
2013—2014年采集贵阳市大气PM_(2.5)样品357个,利用ICP-OES和ICP-MS检测样品中无机元素的含量。结果表明:23种元素的年均值高低依次为Na Ca Al K Mg Fe Cu Zn Mn Pb Ba Cr Ni Sr As=Zr WRb Ga Bi=Ge Co U,其中Cr、As的年均值分别为(30±20) ng/m3和(8±5) ng/m3,超过《环境空气质量标准》(GB3095—2012)的年均参考限值。运用正定矩阵因子分解法(PMF)来源解析表明:该市大气PM_(2.5)的主要来源为燃煤排放源、生物质燃烧源、交通源、建筑水泥尘源、土壤风沙尘源和残油燃烧源,其贡献率分别为46. 6%、21. 7%、14. 8%、9. 0%、6. 2%和1. 7%,且有显著的季节变化特征。  相似文献   

4.
基于2016—2018年安徽省68个国控环境空气质量自动监测站点的臭氧(O_3)监测数据,研究分析了安徽省O_3污染特征及其与气象因子的相关性。结果表明:安徽省O_3污染程度呈现逐年加重趋势,并有显著的季节和月度变化特征。2016—2018年,各年度单月O_3日最大8小时滑动平均质量浓度第90百分位数的最大值分别出现在9月、5月、6月。O_3日变化趋势为典型的单峰形,各年度最低值出现在晨间07:00左右,最高值则是在15:00—16:00。全省O_3浓度总体上呈现出北高南低的空间特征。温度、相对湿度与O_3浓度分别呈现显著正相关、负相关,但在不同季节存在一定差异,其中,春秋季温度与O_3浓度的相关性好于夏冬季,夏季相对湿度与O_3浓度的相关性最为显著。O_3浓度在平均风速为2.1~2.2 m/s时更易出现超标。中部和北部城市在东南风的作用下易出现O_3超标并达到O_3浓度高值,而南部地区在风向为西风时更容易出现O_3超标。  相似文献   

5.
利用泉州城区2017年全年连续观测的O_3和气象要素资料,统计了臭氧浓度的分布特征,分析了气象要素对O_3质量浓度的影响,对比了O_3超标日和非超标日的气象要素特征。结果表明:(1)泉州市O_3质量浓度月变化呈双峰形,春季最高,夏季最低;日变化呈单峰形,最大值出现在13:00—14:00,最小值出现在06:00—07:00,上下游站O_3浓度存在明显传输效应。(2)泉州O_3质量浓度与相对湿度呈负相关,其相关性最高;与风速呈正相关,其相关系数最低,且存在明显区位性差异;与气温的相关性比较复杂,既有正相关,也有负相关。(3)各站点O_3小时质量浓度超标时,均对应2个气象要素区间值。(4)对比污染日非污染日发现,污染日相对湿度较低(50%~60%),非污染日较高(70%~80%);污染日温度略低于非污染日;污染日风向总体为西南偏南,非污染日风向为西南-东南。  相似文献   

6.
于2016年11月9日—14日,用单颗粒气溶胶在线源解析技术分析保山市体育馆监测点大气中PM_(2.5)的化学组成、粒径分布、来源及典型排放源质谱特征。结果表明:采集的颗粒可分为7类,主要以有机碳、元素碳和混合碳颗粒为主,占电离颗粒数的60%以上;不同类型颗粒粒径分布差异较为明显;机动车尾气为首要污染贡献源,且呈周期性变化,每日有两个上升时段,分别为凌晨1:00—10:00和12:00—20:00;其次为燃煤源,贡献率为10%~40%;工艺过程源与生物质燃烧源贡献率相一致,总体上夜间贡献率高于白天;扬尘源、二次无机源贡献率变化幅度不大。  相似文献   

7.
于2014年10月采用GC-MS挥发性有机物(VOCs)在线监测系统在武汉城区开展大气VOCs连续监测,并分析VOCs体积分数的时间变化特征、光化学活性差异及来源。结果表明,武汉城区总VOCs体积分数为45.16×10-9,从高到低依次为烷烃烯烃芳香烃;VOCs日变化呈双峰型特征,峰值分别出现在6:00—8:00和19:00—23:00;T/B和E/E的平均比值分别为0.94和0.61,表明气团受机动车影响显著,且存在老化现象;烯烃对OH消耗速率(LOH)和臭氧生成潜势(OFP)的贡献率最大,芳香烃次之,烷烃最低;以3-甲基戊烷为机动车排放示踪物,计算得出非机动车源对乙烯、甲苯和间/对-二甲苯的贡献率分别为85%、55%和70%。  相似文献   

8.
宁波和温州地区夏季大气中不同粒径颗粒物特征分析   总被引:1,自引:0,他引:1  
对宁波地区北仑和奉化站、温州地区乐清站3个监测点夏季TSP、PM10、PM2.5和PM1.0进行监测,测试分析各种粒径颗粒物浓度水平和粒径分布特征,并通过化学质量平衡(CMB)受体模型对颗粒物进行源解析。监测结果显示,夏季宁波、温州地区TSP和PM10日均浓度为0.049~0.134mg/m3和0.025~0.084mg/m3,均未超过我国环境空气质量二级标准;PM2.5日均浓度为0.007~0.069mg/m3,按美国2006年EPA最新标准限值0.035mg/m3衡量,奉化、乐清、北仑站的超标天数占总监测天数的比例分别为75%、40%和37.5%。粒径分布统计结果显示,3个监测站点PM10占TSP的比例为48.78%~86.96%;PM2.5占TSP的比例为33.33%~72.46%;奉化和乐清监测点PM10中PM2.5和PM1.0的比例平均值在50%以上。源解析结果显示,夏季TSP主要来源于土壤尘,其次是建筑尘和煤烟尘,其贡献率分别为40.70%~55.49%、9.62%~13.64%和5.85%~17.28%。  相似文献   

9.
京津冀地区臭氧污染特征与来源分析   总被引:22,自引:21,他引:1  
2013—2014年京津冀地区13个城市O_3日最大8 h平均值第90百分位数平均为155~162μg/m3,京津冀地区已成为全国O_3污染最严重的地区之一,京津冀地区O_3污染程度有所加重。京津冀地区夏季O_3浓度高,冬季浓度低,O_3质量浓度较高的月份集中在5—9月,12月—次年1月浓度最低。在O_3污染较重的夏季,每日6:00~7:00,O_3质量浓度最低,15:00~16:00 O_3浓度最高。在空间分布上郊区点位的O_3质量浓度往往高于主城区点位。京津冀区域夏季O_3小时浓度和NO2浓度呈高度负相关关系,和其他污染物无明显的相关性。O_3质量浓度和气温呈显著的正相关关系,和大气相对湿度呈显著的负相关关系。京津冀区域O_3的主要来源为NOX和VOC等一次污染物在日光照射下发生光化学反应而产生,控制O_3前体物的源排放,尤其是控制好VOC的排放是控制O_3污染的有效途径。  相似文献   

10.
基于全国空气质量监测网数据,分析了2015—2019年汾渭平原11个城市臭氧(O_3)污染状况。结果表明:2015—2019年,汾渭平原11个城市O_3平均浓度总体呈升高趋势,年平均升高12.2μg/m~3,其中,2017—2019年均超过二级标准限值(160μg/m~3)。O_3单项污染物的空气质量分指数占空气质量指数的比例逐年升高,O_3超标使汾渭平原2015—2019年各年度空气质量优良天数比例分别减少了1.4、5.4、13.0、11.1、14.4个百分点。O_3浓度呈春夏季(5—9月)高、秋冬季(11—12月)低的特点,其中,5—9月O_3超标天数占全部O_3超标天数的97%以上。各年度O_3日最大8小时平均质量浓度(O_3-8 h)的最大值分别为152、176、224、195、202μg/m~3,均出现在5—7月。O_3-8 h介于150~160μg/m~3的日期主要集中在6—8月,介于160~170μg/m~3的日期主要集中在5—7月,两区间对应的日期属于O_3达标敏感天。2017—2019年,区域内各年度首次出现O_3小时污染的日期有逐渐提前的趋势。2019年,汾渭平原11个城市O_3-8 h第90百分位浓度介于138~204μg/m~3,9个城市超过二级标准限值,O_3超标使临汾、洛阳、晋中、运城、渭南、西安、吕梁、咸阳8个城市的空气质量优良天数比例减少了10个百分点以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号