首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
长江南京段近岸沉积物和土壤中重金属分布特征分析   总被引:2,自引:1,他引:1  
通过测定沉积物和土壤中Cd、Pb、Cr、Zn、Cu、Ni 6种重金属元素的平均含量,计算其富集因子,分析长江南京段近岸沉积物和土壤中重金属的空间分布特征,结果表明,几种重金属在沉积物中的富集次序为:CdPbCr1NiCuZn,在土壤中为:CdZnCu1CrPbNi,除Zn和Cu外,其他几种金属在沉积物中的富集程度高于土壤,同时Cd的含量超过土壤环境质量三级标准。以Cd和Pb为例分析了重金属含量与沉积物粒级之间的关系,回归分析显示,Cd、Pb的含量与颗粒物的粒级呈显著的相关性,与细颗粒物的含量有密切关系,细颗粒携带的重金属,在长江水力分选作用下到达下游,成为沉积物中重金属的主要来源。  相似文献   

2.
靳霞  王莉 《中国环境监测》2013,29(4):116-124
通过M3法对耕地土壤重金属的联合测定,为土壤重金属污染监测应用提供快速联合测定的方法。用M3法测定北方耕地土壤的有效Cd、Cr、Pb和Ni,通过对M3法与其他方法进行有效重金属测定值差异性及其相关性比较,与全量的浸出率分析等探讨M3法对耕地土壤有效重金属测定的特征。结果表明,M3法在《土壤环境质量标准》(GB 15618—1995)的土壤重金属含量范围内可以测定土壤有效态重金属Cd、Cr、Pb和Ni,且呈线性极显著相关。M3法与其他方法有效Cd、Cr、Pb和Ni有较好的相关性,与DTPA法呈极显著相关;与NaNO3法除有效Pb外,呈极显著和显著相关;与HCl法除褐土和潮土的有效Pb外,也呈极显著和显著相关。M3法的有效态Cd、Cr、Pb和Ni的测定值均为最大。M3法对4种耕地土壤有效Cd、Cr、Pb和Ni的浸出率,因土壤类型不同,有效重金属含量所占比率不同,但利用M3法测定的有效态Cd、Cr、Pb和Ni的浸出率最大。  相似文献   

3.
濮阳工业园区土壤重金属背景值及质量评价   总被引:6,自引:5,他引:1  
为了研究濮阳工业园区土壤重金属背景值,采集了该园区及周边土壤46个样品,测定了土壤中重金属Cu、Zn、Pb、Cr、Cd和Ni的含量,并采用污染负荷指数法和潜在生态危害指数法对土壤质量进行了评价。结果表明:工业园区土壤中Cu、Zn、Pb、Cr、Cd、Ni的背景值分别为36.2、118、49.2、40.6、0.125、15.3 mg/kg;Cu、Zn、Pb、Cd的含量高于河南省土壤重金属背景值;Pb为极强污染,Cu、Zn、Cd为中等污染,重金属污染程度从重到轻的排序为PbZnCuCd,表明濮阳工业园区土壤重金属具有轻微的潜在生态危害。  相似文献   

4.
The accumulation of heavy metals (Cd, Cr, Cu, Pb and Zn) and magnetic minerals in soils along an urban-rural gradient in the rapidly growing Hangzhou City, Eastern China, was measured. The analytical results indicated that heavy metal concentrations, magnetic susceptibility (chilf) and saturation isothermal remnant magnetization (SIRM) in soils decreased with increasing distance from the urban center. The significant relationships existed between heavy metal concentrations, chilf and SIRM and distance from the urban center. The soils in the urban areas were enriched with Cd, Cu, Pb and Zn. Elevated concentrations of heavy metals (especially Cd and Zn) in urban areas indicated the evidence for the accumulation of heavy metal contaminants from anthropogenic activities. Enhanced heavy metal concentrations and magnetic susceptibility were located in the uppermost soil horizons (0-10 cm), decreasing downwards to background values. The significant positive correlations between the Tomlinson Pollution Load Index (PLI) and magnetic susceptibility and SIRM were observed in polluted soil samples. Strong positive correlation indicated that magnetic screening/monitoring provided a fast and non-destructive tool, which can be effectively used as a proxy to detect environmental pollution in rapidly growing urbanization regions affected by anthropogenic activities.  相似文献   

5.
Guideline values are used to identify polluted or contaminated areas based on background values. Brazilian law establishes three guideline values for pollutants: a quality reference value (QRV), a prevention value, and an intervention value. Reference values refer to the natural concentration of an element or a substance in soils that have not been modified by anthropogenic impacts. These values inform assessments of soil quality and are used to establish maximum permissible limits. The objective of this study was to determine the natural levels and reference values for Cd, Co, Cr, Cu, Ni, Pb, and Zn in samples from the surface layer (0–20 cm) of 19 representative soils of the states of Mato Grosso and Rondônia, on Brazil’s agricultural frontier. Pseudo-total metal concentrations were obtained following microwave-assisted digestion using the aqua regia and EPA3051 methods. QRVs were calculated for each element as the 75th and 90th percentiles of the frequency distribution of the data. Natural levels of heavy metals in the soil samples followed the order: Cr?>?Zn?>?Cu?>?Co?>?Pb?>?Ni?>?and Cd (aqua regia) and Cr?>?Co?>?Cu?>?Pb?>?Zn?>?Ni?>?Cd (EPA3051). These values are generally lower than those reported in the Brazilian and international literature, which highlights the importance of establishing reference values for each state or for each soil type, taking into account the geomorphological, pedological, and geological diversity of the region under study.  相似文献   

6.
An intensive investigation was conducted to study the accumulation, speciation, and distribution of various heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) in sediments from the Yangtze River catchment of Wuhan, China. The potential ecological risks posed by these heavy metals also were estimated. The median concentrations of most heavy metals (As, Cd, Cr, Cu, Ni, Pb, and Zn) were higher than the background values of soils in Wuhan and were beyond the threshold effect level (TEL), implying heavy metal contamination of the sediments. Carbonate-bound Cd and exchangeable Cd, both of which had high bioavailability, were 40.2% and 30.5% of the total for Cd, respectively, demonstrating that Cd poses a high ecological risk in the sediments. The coefficients of the relationship among Pb, Hg, and Cu were greater than 0.797 using correlation analysis, indicating the highly positive correlation among these three elements. Besides, total organic carbon content played an important role in determining the behaviors of heavy metals in sediments. Principal component analysis was used to study the distribution and potential origin of heavy metals. The result suggested three principal components controlling their variability in sediments, which accounted for 36.72% (factor 1: Hg, Cu, and Pb), 28.69% (factor 2: Cr, Zn, and Ni), and 19.45% (factor 3: As and Cd) of the total variance. Overall, 75% of the studied sediment samples afforded relatively low potential ecological risk despite the fact that generally higher concentrations of heavy metals relative to TEL were detected in the sediments.  相似文献   

7.
某铀尾矿库周围农田土壤重金属污染潜在生态风险评价   总被引:6,自引:1,他引:5  
为能够定量评价铀尾矿库周围农田土壤重金属污染程度及其潜在生态危害性,采用Hakanson潜在生态风险指数法对土壤中重金属进行综合污染评价。结果表明,铀尾矿库周围部分农田土壤中重金属Cd、Ni、As、Cu、Hg、Zn含量存在积累和超标情况,尤以Cd的污染最严重,Ni、As次之;Pb、Cr含量能够满足标准限值要求。潜在生态风险评价结果显示,铀尾矿库周围农田土壤重金属潜在生态风险较高,主要潜在生态风险因子为Cd,其次是Hg、As,Cr、Pb、Ni、Cu、Zn并不构成潜在生态风险。铀尾矿库周围农田土壤中较高水平的Cd在构成环境污染的同时,也构成了较严重的生态危害,应加强对重金属Cd、Hg的生态风险防治。  相似文献   

8.
The soils of the Brazilian Amazon exhibit large geochemical diversity reflecting the different soil formation processes in an area covering 49% of the Brazilian territory. Soil contamination by heavy metals is one of the threats to the sustainability of this Biome but establishing quality reference values (QRVs) for the region is a challenging owing to the immense territorial area of the Amazon. This study aimed to determine the natural background of heavy metals in soils from the southwestern Brazilian Amazon in order to propose QRVs for Ba, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Sb, and Zn for alluvial sedimentary soils. One hundred and twenty-eight soil samples were collected at a depth of 0.0–0.2 m in sites with minimal anthropogenic interference. Soil sample digestion was based on the EPA 3051A method and metal concentrations were determined by ICP-OES. QRVs calculated for the southwestern Brazilian Amazon are among the lowest recorded in Brazil (mg kg?1): Ba (16.5), Cd (0.1), Cr (6.9), Cu (2.8), Fe (15.4), Mn (13.4), Ni (1.7), Pb (4.4), Sb (0.9), and Zn (5.7). The low metal concentration is likely a result of the sedimentary origin of the soils. The results of this study can serve as a basis for defining public policies to investigate the environmental impacts resulting from changes in land use in areas of the Brazilian Amazon.  相似文献   

9.
Concentrations of Cu, Zn, Pb, Cr, Cd, Fe, and Ni have been estimated in soils and vegetables grown in and around an industrial area of Bangladesh. The order of metal contents was found to be Fe > Cu > Zn > Cr > Pb > Ni > Cd in contaminated irrigation water, and a similar pattern Fe > Zn > Ni > Cr > Pb > Cu > Cd was also observed in arable soils. Metal levels observed in different sources were compared with WHO, SEPA, and established permissible levels reported by different authors. Mean concentration of Cu, Fe, and Cd in irrigation water and Cd content in soil were much above the recommended level. Accumulation of the heavy metals in vegetables studied was lower than the recommended maximum tolerable levels proposed by the Joint FAO/WHO Expert Committee on Food Additives (1999), with the exception of Cd which exhibited elevated content. Uptake and translocation pattern of metal from soil to edible parts of vegetables were quite distinguished for almost all the elements examined.  相似文献   

10.
Today there is consensus concerning the road traffic's role as a metal source. However, there are so far only a few studies which focus on the road side immission patterns regarding distance from roads, and especially in combination with the leachability of heavy metals down the soil profile. In this study, the aim was to analyse concentrations of traffic related metals in road side soils, at different depths and distances from roads, both to analyse the immission patterns as well as to explain the importance of the road construction design of the road side terrain. The BCR sequential extraction procedure was performed to be able to address the environmental risk in terms of metal mobility. Approximately 80 soil samples were analysed for seven metals; antimony (Sb), cadmium (Cd), copper (Cu), chromium (Cr), lead (Pb), nickel (Ni) and zinc (Zn). The results showed that, depending on metal, the total metal concentrations in road side soils have increased 3-16 times compared to regional background during the last decades. Each metal had a limited dispersal distance from the roads as well as down in the soil profile and the road construction significantly affected the metal immission distance. Elevated metal concentrations were mostly found for top soils and down to 10 cm in the soil profiles. The labile fractions counted for more than 40% of the total concentrations for Cd, Cu, Ni, Pb and Zn, indicating a potential mobilization of the metals if the road side soils become disturbed. The present soil metal concentration levels are not alarming, but metals with a high accumulation rate might gradually be an upcoming problem if nothing is done to their emission sources.  相似文献   

11.
乌鲁木齐市米东污灌区农田土壤重金属污染评价   总被引:7,自引:0,他引:7  
对米东污灌区农田土壤重金属含量进行监测分析,利用不同的评价方法和标准对土壤重金属的环境质量进行评价。结果表明:米东污灌区农田土壤重金属含量分别为Cd(0.12±0.06)mg/kg,Cu(40.43±5.30)mg/kg,Zn(78.38±11.04)mg/kg,Pb(11.66±11.79)mg/kg,Ni(20.24±8.05)mg/kg,Cr(75.81±8.05)mg/kg。以国家土壤环境质量标准(二级)为标准评价,各元素的污染指数排序为Cu>Ni>Cr>Zn>Cd>Pb,综合污染指数为0.337,污染程度为安全。以食用农产品产地土壤环境质量要求为标准评价,各元素的污染指数排序为Cu>Ni>Cr>Zn>Cd>Pb,综合污染指数为0.343,污染程度为安全。表明米东污灌区农田土壤重金属含量尚能达到食用农产品产地土壤环境质量要求。Pb、Cu、Zn的平均含量超过乌鲁木齐市土壤背景值,这说明污灌区土壤重金属Pb、Cu、Zn近年来已有所累积,存在一定的污染风险。  相似文献   

12.
为揭示土壤主要无机元素积累成因,制定科学防控措施,以菏泽市养殖型、蔬菜型、粮食型、工业型4种类型村庄为研究对象,分析了11个典型村庄8种土壤主要无机元素含量、分布特征及污染风险。结果表明,土壤镉、汞、砷、铅、铬、铜、镍、锌的质量分数分别为0. 01~0. 53、0. 002~0. 145、5. 51~15. 20、17. 6~75. 8、14. 5~69. 9、13. 3~33. 8、18. 8~46. 9、41. 5~96. 4 mg/kg。蔬菜型村庄镉、汞、铅元素含量最高;粮食型村庄铬、铜、镍含量最高;养殖型村庄砷、锌元素含量最高;工业型村庄铬、铜、镍元素含量较高,其余元素的含量都较低。各主要无机元素平均值均未超过农用地土壤污染筛选值,但除汞外,均超过了黄河故道区域土壤环境背景值,尤以镉最显著。  相似文献   

13.
This study was conducted to determine status of heavy metals in agricultural soils under different patterns of land use. A total of 38, 40 and 45 soil samples for bare vegetable field, greenhouse vegetable field, and grain crop field were respectively taken from surface layer (0–20 cm) from selected experimental areas away from suburbs of ten counties (or districts or cities) in four provinces or municipalities of Huabei plain in north China. Information of crop production history, including varieties, rotation systems and fertilizer use, at the corresponding sampling sites was surveyed. Soil total Cu, Zn, Cd, Pb, Cr, As and Hg were measured. The results showed that the contents of total Cu, Zn, Cd, Pb, Cr, As, and Hg in the soil samples, especially soil total Cu and Zn contents, were higher in the bare vegetable field and the greenhouse vegetable field than that in the grain crop field. Long-term use of excessive chemical fertilizers and organic manures in the bare vegetable field and the greenhouse vegetable field contributed to the accumulation of Cu, Zn, and other heavy metals in the soils. The contents of total Cu, Zn, and other heavy metals in soils increased with increasing vegetable production history of the research areas. In comparison with the grain crop field, the comprehensive pollution indices of the seven soil heavy metals and the single-factor pollution indices of soil Zn, Cu, Cd, Cr, and Hg based on the second criterion of Environmental Quality Standard for Soils were significantly higher in the bare vegetable field and the greenhouse vegetable field. Soils from the greenhouse vegetable field were slightly contaminated according to the comprehensive pollution index, and soils from the bare vegetable field and the grain crop field were at the warning heavy metal pollution level. The soils were contaminated with Cd according to the single-factor pollution index. The Cd pollution was relatively more serious in the bare vegetable field and the greenhouse vegetable field than that in the grain crop field. The soils selected with different land use patterns were not contaminated with Zn, Cu, Pb, Cr, As and Hg.  相似文献   

14.
分析和评价典型涉污企业周边土壤环境质量,对于加强企业用地环境风险管控,实施土壤重金属污染精准防控,进一步保障农产品质量安全具有重要意义。以18类典型涉污企业周边土壤为研究对象,对475家企业周边的2 017个监测样点进行土壤重金属Cd、As、Pb、Hg、Cr、Cu、Zn和Ni元素含量测定,并采用主成分分析法、Hakanson 潜在生态风险指数法进行分析及评价。结果表明:典型涉污企业周边土壤重金属污染以Cd、Pb和As元素为主,各元素含量超过土壤污染风险筛选值的样品比例为9.82%~31.0%,超过土壤污染风险管控值的样品比例为4.46%~13.1%,其次是Zn、Cu、Hg和Ni,Cr无明显污染;主要污染元素Cd、Pb、As、Zn和Cu来自相同污染源且主要分布在有色金属矿采选业(B9)、黑色金属冶炼和压延加工业(C31)、有色金属冶炼和压延加工业(C32)、生态保护和环境治理业(N77)等行业企业周边;黑色金属冶炼和压延加工业(C31)、有色金属矿采选业(B9)、有色金属冶炼和压延加工业(C32)等行业企业周边土壤重金属潜在生态风险等级较高,中等风险及以上比例分别为76.0%、53.0%和54.1%。可见,典型涉污企业周边土壤重金属存在一定程度的污染,尤其是有色金属矿采选业(B9)等采矿业以及黑色金属冶炼和压延加工(C31)等制造业等,污染程度高,潜在生态风险大,需要加强监测和管控。  相似文献   

15.
Coastal and estuarine areas are often polluted by heavy metals that result from industrial production and agricultural activities. In this study, we investigated the concentration trait and vertical pattern of trace elements, such as As, Cd, Ni, Zn, Pb, Cu, and Cr, and the relationship between those trace elements and the soil properties in coastal wetlands using 28 profiles that were surveyed across the Diaokouhe Nature Reserve (DKHNR). The goal of this study is to investigate profile distribution characteristics of heavy metals in different wetland types and their variations with the soil depth to assess heavy metal pollution using pollution indices and to identify the pollution sources using multivariate analysis and sediment quality guidelines. Principal component analysis, cluster analysis, and pollution level indices were applied to evaluate the contamination conditions due to wetland degradation. The findings indicated that the concentration of trace elements decreased with the soil depth, while Cd increases with soil depth. The As concentrations in reed swamps and Suaeda heteroptera surface layers were slightly higher than those in other land use types. All six heavy metals, i.e., Ni, Cu, As, Zn, Cr, and Pb, were strongly associated with PC1 (positive loading) and could reflect the contribution of natural geological sources of metals into the coastal sediments. PC2 is highly associated with Cd and could represent anthropogenic sources of metal pollution. Most of the heavy metals exhibited significant positive correlations with total concentrations; however, no significant correlations were observed between them and the soil salt and soil organic carbon. Soil organic carbon exhibited a positive linear relationship with Cu, Pb, and Zn in the first soil layer (0–20 cm); As, Cr, Cu, Ni, Pb, and Zn in the second layer (20–40 cm); and As, Cr, Cu, Ni, Pb, and Zn in the third layer (40–60 cm). Soil organic carbon exhibited only a negative correlation with Cd (P?I geo values), which averaged less than 0 in the three soil layers, this finding indicates that the soils have remained unpolluted by these heavy metals. The mean concentrations of these trace elements were lower than Class I criteria. The degradation wetland restoration suggestions have also been provided in such a way as to restore the reserved flow path of the Yellow River. The results that are associated with trace element contamination would be helpful in providing scientific directions to restore wetlands across the world.  相似文献   

16.
Soil samples from 16 urban sites in Lianyungang, China were collected and analyzed. A pollution index was used to assess the potential ecological risk of heavy metals and a sequential extraction procedure was used to evaluate the relative distribution of Cu, Zn, Pb, Cd, Cr, and As in exchangeable, carbonate, Fe/Mn oxide, organic/sulfide, and residual fractions. The mobility of heavy metals and urease (URE) activity, alkaline phosphatase (ALP) activity, and invertase (INV) activity of soils was determined. The results showed that the average concentrations of Cu, Zn, Pb, Cd, Cr, and As in Lianyungang soils were much higher than those in the coastal city soil background values of Jiangsu and China. Among the five studied regions (utilities, commercial, industrial, tourism, and roadside), the industrial region had the highest metal concentrations demonstrating that land use had a significant impact on the accumulation of heavy metals in Lianyungang soils. Compared to the other metals, Cd showed the highest ecological risk. According to chemical partitioning, Cu was associated with the organic/sulfides and Pb and Zn were mainly in the carbonate and the Fe/Mn oxide phase. The greatest amounts of Cd were found in exchangeable and carbonate fractions, while Cr and As were mainly in the residual fraction. Cd had the highest mobility of all metals, and the order of mobility (highest to lowest) of heavy metals in Lianyungang soils was Cd > Zn > Pb > Cu > As > Cr. Soil urease activity, alkaline phosphatase activity, and invertase activity varied considerably in different pollution degree sites. Soil enzyme activities had the lowest levels in roadside and industrial regions. Across all the soil data in the five regions, the total Cu, Zn, Pb, Cd, Cr, and As level was negatively correlated with urease activity, alkaline phosphatase activity, and invertase activity, but the relationship was not significant. In the industrial region, alkaline phosphatase activity had significant negative correlations with total Cu, Pb, Cr, Zn, Cd, and heavy metal fractions. This showed that alkaline phosphatase activity was sensitive to heavy metals in heavily contaminated regions, whereas urease and invertase were less affected. The combination of the various methods may offer a powerful analytical technique in the study of heavy metal pollution in street soil.  相似文献   

17.
徽县铅锌冶炼区土壤中重金属的空间分布特征   总被引:4,自引:3,他引:1  
采集甘肃省徽县铅锌冶炼区域土壤样品,分析该区域内重金属污染分布规律及污染特征。结果表明,表层土壤中Pb、Cd、Cu、Zn的平均含量分别为214、3.12、25.8、79.5 mg/kg。研究区域内重金属的分布特征显示,污染浓度由冶炼厂中心向四周递减。纵向0~30 cm范围内重金属含量逐渐降低,大部分重金属污染物集中在土壤表层的0~20 cm区域,其中0~2 cm区域内含量较高,Pb和Cd的最高含量分别达到3 877、24.8 mg/kg,与国家土壤环境质量二级标准(p H 6.5~7.5)(GB 15618—1995)相比,分别超标13、82倍,属于重度污染。重金属元素的分布与土壤有机碳含量及p H相关。冶炼厂周围的重金属污染应引起有关部门的高度重视,严格控制污染源,尽快采取措施以防止污染范围进一步扩大。  相似文献   

18.
The present study aimed to assess the potential ecological risk of heavy metals and nutrient accumulation in polytunnel greenhouse soils in the Yellow River irrigation region (YRIR), Northwest China, and to identify the potential sources of these heavy metals using principal component analysis. Contents of available nitrogen (AN), phosphorus (AP), and potassium (AK) in the surface polytunnel greenhouse soils (0–20 cm) varied from 13.42 to 486.78, from 39.10 to 566.97, and from 21.64 to 1,156.40 mg kg?1, respectively, as well as AP, soil organic matter (SOM) and AK contents tended to increase significantly at the 0–20- and 20–40-cm soil layers. Heavy metal accumulations occurred in the polytunnel greenhouse soils as compared to arable soils, especially at a depth of 20 cm where Cd, Zn and Cu contents were significantly higher than arable soil. Cd and As were found to be the two main polluting elements in the greenhouse soils because their contents exceeded the thresholds established for greenhouse vegetable production HJ333-2006 in China and the background of Gansu province. It has been shown that Cd, Cu, Pb and Zn at the 0–20-cm soil layer were derived mainly from agricultural production activities, whereas contents of Cr and Ni at the same soil layer were determined by ‘natural’ factors and As originated from natural sources, deposition and irrigation water.  相似文献   

19.
Highways and main roads are a potential source of contamination for the surrounding environment. High traffic rates result in elevated heavy metal concentrations in road runoff, soil and water seepage, which has attracted much attention in the recent past. Nonetheless, investigations of pollutants in roadside soils are still a subject of major interest due to the rapid development of traffic systems and increasing traffic all over the world. The accumulation of the heavy metals Pb, Cd, Cu and Zn in soils along the oldest federal highway of the world has been studied by sampling a roadside transect of 125 by 10?m. In addition, heavy metal concentrations of Pb, Cd, Zn, Cu, Ni and Cr in soil solutions from different distances (2.5, 5 and 10?m) from the hard shoulder of the highway and from three soil depths (10, 30, and 50?cm) were investigated. The results show that heavy metal concentrations are up to 20 times increased compared to the geochemical background levels and a reference site of 800-m distance from the roadside. Soil matrix concentrations in the topsoil (0-10?cm) mostly exceeded the precautionary values of the German Federal Soil Protection and Contamination Ordinance (BBodSchV). The concentrations of Cd, Pb and Zn in the soil matrix tended to decrease with distance from the roadside edge, whereas the concentrations in the soil solution increased at a distance of 10?m onwards due to a lower soil pH. Because of both high pH values and a high sorption capacity of the soils, soil solution concentrations seldom exceeded the trigger values of the German Federal Soil Protection and Contamination Ordinance (BBodSchV) for transferring soil solution to groundwater.  相似文献   

20.
The aim of this paper is to evaluate total and bioavailable concentration of heavy metals in agricultural soils in order to estimate their distribution, to identify the possible correlations among toxic elements and the pollution sources, to distinguish the samples in relation to sampling site or to sampling depth, and to evaluate the available fraction providing information about the risky for plants. In particular, we reinvestigated total concentrations of As, Be, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sb, V, and Zn and available concentrations of As, Be, Cd, Cr, Cu, Hg, Ni, Pb, Sb, and Zn in soil from Apulia (Southern Italy). Analytical results showed that total concentrations, for all soils, are in the range permitted by regulations in force in Italy, but some soils evidence slight enrichment of Cd, Cr, Cu, Pb, and Zn. All the heavy metals in the available fraction were below the detection limits of the analytical techniques used except Cu, Ni, Pb, and Zn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号