首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
Geostatistical methods are one of the advanced techniques to interpolate groundwater quality data. Geostatistical interpolation techniques employ both the mathematical and the statistical properties of the measured points. Compiling the data distribution on spatial and temporal domain is of crucial importance in order to evaluate its quality and safety. The main purpose of this paper is to assess groundwater quality of Arak plain, Iran, by an unbiased interpolated method so called Kriging. Therefore, seven quality variables of Arak plain aquifer including TDS, SAR, EC, Na+, TH, Cl?, and SO4 2? have been analyzed, studied, and interpreted statistically and geostatistically. Utilized data in this study were collected from 97 water well samples in Arak plain, in 2012. After normalizing data, variogram as a geostatistical tool for defining spatial regression was calculated and experimental variograms have been plotted by GS+ software, then the best theoretical model was fitted to each variogram based on minimum RSS error. Cross validation was used to determine the accuracy of the estimated data. The uncertainty of the method could be well assessed via this method since the method not only gave the average error (around 0 in this study) but also gave the standard deviation of the estimations. Therefore, more than 3800 points were estimated by ordinary Kriging algorithm in places which have not been sampled. Finally, estimation maps of groundwater quality were prepared and map of estimation variance, EV, has been presented to assess the quality of estimation in each estimated point. Results showed that the Kriging method is more accurate than the traditional interpolation algorithms not honoring the spatial properties of the database.  相似文献   

2.
Groundwater level plays a significant role in coastal plains. Heavy pumping and excessive use of near-coast groundwater can increase the intrusion of seawater into the aquifers. In the present study, groundwater levels were measured at 59 groundwater wells at different times during pre- and post-irrigation seasons (April and September of the year 2012) in Çar?amba Plain, Turkey. To select the best method, two deterministic interpolation methods (inverse distance weighing (IDW) with the weights of 1, 2, and 3 and radial basis function (RBF) with spline with tension (SPT) and completely regularized spline (CRS)) and two stochastic methods (ordinary kriging (OK) with spherical, exponential, and Gaussian variograms) and cokriging (COK)) were compared and then the best interpolation method was used to evaluate the spatial distribution of groundwater levels in different seasons and seasonal changes. A total of nine different techniques were tested. Also, risky areas of seawater intrusion in coastal area were determined using the best methods for two periods. The performance of these interpolation methods is evaluated by using a validation test method. Statistical indices of correlation (R 2), mean absolute error (MAE), and root-mean-square error (RMSE) were used to select and validate the best methods. Comparisons between predicted and observed values indicated RBF as the optimal method for groundwater level estimation in April and September. When the best method RBF and the worst method IDW were compared, significant differences were observed in the spatial distribution of groundwater. Results of the study also revealed that excessive groundwater withdrawals during the post-irrigation season dropped the groundwater levels up to 2.0 m in some sections. With regard to seawater intrusion, 9,103 ha of land area was determined to be highly risky and risky.  相似文献   

3.
Geostatistical strategy for soil sampling: the survey and the census   总被引:4,自引:0,他引:4  
A soil sampling strategy for spatially correlated variables using the tools of geostatistical analysis is developed. With a minimum of equations, the logic of geostatistical analysis is traced from the modeling of a semi-variogram to the output isomaps of pollution estimates and their standard deviations. These algorithms provide a method to balance precision, accuracy, and costs. Their axiomatic assumptions dictate a two-stage sampling strategy. The first stage is a sampling survey, using a radial gird, to collect enough data to define, by a semi-variogram, the ranges of influence and the orientation of the correlation structure of the pollutant plume. The second stage is a census of the suspected area with grid shape, sizes and orientation dictated by the semi-variogram. The subsequent kriging analysis of this data gives isopleth maps of the pollution field and the standard error isomap of this contouring. These outputs make the monitoring data understandable for the decision maker.  相似文献   

4.
The largest uncertainties are associated with estimating the soil organic carbon (SOC) stock because of natural soil variability and data scarcity. Thus, a local spatial geostatistical hybrid approach, the geographically weighted regression kriging (GWRK), was used in the present study to overcome some of these uncertainties. This study was designed to estimate the SOC stock (kg C m(-2)) for the surface 0 to 15 cm depth using the state of Pennsylvania as the study region. A total of 920 soil profiles were extracted from the National Soil Survey Center database and were divided into calibration (80%) and validation (20%) periods. Some soil parameters that include clay content, bulk density (ρ(b)), total nitrogen (TN) content, pH, Ca(2+), Na(+), extractable acidity (EXACID), and cation exchange capacity (CEC) were used as covariates for estimating the SOC stock. These covariates exhibited spatial autocorrelation (Moran's Index, I = 0.62 to 0.89). Further, residuals of geographically weighted regression were spatially autocorrelated, and hence support the use of the GWRK approach. Validation results concluded that the performance of the GWRK approach was the best with the lowest values of root mean square error, mean estimation error and mean absolute estimation error. The estimated SOC stock for the surface 0 to 15 cm depth ranged from 1.41 to 3.94 kg m(-2). Results from this study show that the GWRK captures spatial dependent relationships, and addresses spatial non-stationarity issues, hence this approach improves the estimations of SOC stock.  相似文献   

5.
This article details the results of an investigation into the application of geostatistical data analysis to two environmentalradiometric time series. The data series employed consist of 99Tc values for seaweed (Fucus vesiculosus) and seawater samples taken as part of a marine monitoring program conducted on the coast of northern Norway by the Norwegian Radiation Protection Authority. Geostatistical methods were selected in order to provide information on values of the variables at unsampled times and to investigate the temporalcorrelation exhibited by the data sets. This information is ofuse in the optimisation of future sampling schemes and for providing information on the temporal behaviour of the variablesin question that may not be obtained during a cursory analysis.The results indicate a high degree of temporal correlation withinthe data sets, the correlation for the seawater and seaweed databeing modelled with an exponential and linear function,respectively. The semi-variogram for the seawater data indicatesa temporal range of correlation of approximately 395 days with noapparent random component to the overall variance structure and was described best by an exponential function. The temporal structure of the seaweed data was best modelled by a linear function with a small nugget component. Evidence of drift was present in both semi-variograms. Interpolation of the data setsusing the fitted models and a simple kriging procedure were compared, using a cross-validation procedure, with simple linearinterpolation. Results of this exercise indicate that, for theseawater data, the kriging procedure outperformed the simpleinterpolation with respect to error distribution andcorrelation of estimates with actual values. Using theunbounded linear model with the seaweed data produced estimatesthat were only marginally better than those produced by thesimple interpolation.  相似文献   

6.
This study attempts to determine the scale-dependent hierarchical spatial variation and longitudinal distributions of Sicyopterus japonicus year round. The distribution of S. japonicus in the Datuan Stream in northern Taiwan was surveyed during the fall and winter 2007, as well as the spring and summer of 2008. The spatial structure of S. japonicus density was modeled using geostatistics. The longitudinal distributions of S. japonicus density were then estimated using kriging and hydrology distance with nested variogram models. Variography results indicate that nested variogram models could reflect the hierarchical structure in the spatial variation of seasonal S. japonicus density, with the small, median, and large ranges representing three nested scales. Models for the four seasons were consistent in that they shared the same shape of variogram models with various ranges and sill values. This model shape consistency implies stationary spatial correlations in the longitudinal fish distribution across the four seasons. The Kriging geostatistical method based on the multiple scales nested variogram models also provided robust estimates of S. japonicus densities at unsampled sections. We conclude that S. japonicus densities exhibit hierarchical patterns and variation in the four seasons along the study stream. Geostatistical methods with a nested variograms and hydrological distance are a highly effective means of delineating the hierarchical structure in longitudinal patterns of S. japonicus density in each season, providing estimates of the S. japonicus density for hierarchically structured spatial distributions and expanding knowledge of S. japonicus beyond the limits imposed by spatial and temporal scales.  相似文献   

7.
Soil moisture data can reflect valuable information on soil properties, terrain features, and drought condition. The current study compared and assessed the performance of different interpolation methods for estimating soil moisture in an area with complex topography in southwest China. The approaches were inverse distance weighting, multifarious forms of kriging, regularized spline with tension, and thin plate spline. The 5-day soil moisture observed at 167 stations and daily temperature recorded at 33 stations during the period of 2010–2014 were used in the current work. Model performance was tested with accuracy indicators of determination coefficient (R 2), mean absolute percentage error (MAPE), root mean square error (RMSE), relative root mean square error (RRMSE), and modeling efficiency (ME). The results indicated that inverse distance weighting had the best performance with R 2, MAPE, RMSE, RRMSE, and ME of 0.32, 14.37, 13.02%, 0.16, and 0.30, respectively. Based on the best method, a spatial database of soil moisture was developed and used to investigate drought condition over the study area. The results showed that the distribution of drought was characterized by evidently regional difference. Besides, drought mainly occurred in August and September in the 5 years and was prone to happening in the western and central parts rather than in the northeastern and southeastern areas.  相似文献   

8.
Patterns of Spatial Autocorrelation in Stream Water Chemistry   总被引:2,自引:0,他引:2  
Geostatistical models are typically based on symmetric straight-line distance, which fails to represent the spatial configuration, connectivity, directionality, and relative position of sites in a stream network. Freshwater ecologists have explored spatial patterns in stream networks using hydrologic distance measures and new geostatistical methodologies have recently been developed that enable directional hydrologic distance measures to be considered. The purpose of this study was to quantify patterns of spatial correlation in stream water chemistry using three distance measures: straight-line distance, symmetric hydrologic distance, and weighted asymmetric hydrologic distance. We used a dataset collected in Maryland, USA to develop both general linear models and geostatistical models (based on the three distance measures) for acid neutralizing capacity, conductivity, pH, nitrate, sulfate, temperature, dissolved oxygen, and dissolved organic carbon. The spatial AICC methodology allowed us to fit the autocorrelation and covariate parameters simultaneously and to select the model with the most support in the data. We used the universal kriging algorithm to generate geostatistical model predictions. We found that spatial correlation exists in stream chemistry data at a relatively coarse scale and that geostatistical models consistently improved the accuracy of model predictions. More than one distance measure performed well for most chemical response variables, but straight-line distance appears to be the most suitable distance measure for regional geostatistical modeling. It may be necessary to develop new survey designs that more fully capture spatial correlation at a variety of scales to improve the use of weighted asymmetric hydrologic distance measures in regional geostatistical models.  相似文献   

9.
Two non-parametric kriging methods such as indicator kriging and probability kriging were compared and used to estimate the probability of concentrations of Cu, Fe, and Mn higher than a threshold value in groundwater. In indicator kriging, experimental semivariogram values were fitted well in spherical model for Fe and Mn. Exponential model was found to be best for all the metals in probability kriging and for Cu in indicator kriging. The probability maps of all the metals exhibited an increasing risk of pollution over the entire study area. Probability kriging estimator incorporates the information about order relations which the indicator kriging does not, has improved the accuracy of estimating the probability of metal concentrations in groundwater being higher than a threshold value. Evaluation of these two spatial interpolation methods through mean error (ME), mean square error (MSE), kriged reduced mean error (KRME), and kriged reduced mean square error (KRMSE) showed 3.52% better performance of probability kriging over indicator kriging. The combined result of these two kriging method indicated that on an average 26.34%, 65.36%, and 99.55% area for Cu, Fe, and Mn, respectively, are coming under the risk zone with probability of exceedance from a cutoff value is 0.6 or more. The groundwater quality map pictorially represents groundwater zones as ??desirable?? or ??undesirable?? for drinking. Thus the geostatistical approach is very much helpful for the planners and decision makers to devise policy guidelines for efficient management of the groundwater resources so as to enhance groundwater recharge and minimize the pollution level.  相似文献   

10.
In the United States, probability-based water quality surveys are typically used to meet the requirements of Section 305(b) of the Clean Water Act. The survey design allows an inference to be generated concerning regional stream condition, but it cannot be used to identify water quality impaired stream segments. Therefore, a rapid and cost-efficient method is needed to locate potentially impaired stream segments throughout large areas. We fit a set of geostatistical models to 312 samples of dissolved organic carbon (DOC) collected in 1996 for the Maryland Biological Stream Survey using coarse-scale watershed characteristics. The models were developed using two distance measures, straight-line distance (SLD) and weighted asymmetric hydrologic distance (WAHD). We used the Corrected Spatial Akaike Information Criterion and the mean square prediction error to compare models. The SLD models predicted more variability in DOC than models based on WAHD for every autocovariance model except the spherical model. The SLD model based on the Mariah autocovariance model showed the best fit (r2 = 0.72). DOC demonstrated a positive relationship with the watershed attributes percent water, percent wetlands, and mean minimum temperature, but was negatively correlated to percent felsic rock type. We used universal kriging to generate predictions and prediction variances for 3083 stream segments throughout Maryland. The model predicted that 90.2% of stream kilometers had DOC values less than 5 mg/l, 6.7% were between 5 and 8 mg/l, and 3.1% of streams produced values greater than 8 mg/l. The geostatistical model generated more accurate DOC predictions than previous models, but did not fit the data equally well throughout the state. Consequently, it may be necessary to develop more than one geostatistical model to predict stream DOC throughout Maryland. Our methodology is an improvement over previous methods because additional field sampling is not necessary, inferences about regional stream condition can be made, and it can be used to locate potentially impaired stream segments. Further, the model results can be displayed visually, which allows results to be presented to a wide variety of audiences easily.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号