首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
以我国干旱区典型内陆湖泊流域——新疆艾比湖流域为研究区,对其平原区1990--2005年的景观格局动态变化特征进行了研究。结果表明,1990--2005年,研究区农田、湿地及人居地景观的面积增加,其中以农田景观的面积增加量最大;而林地、草地、沙地、戈壁和盐碱地景观的面积呈减少趋势,其中草地、盐碱地和林地景观面积减少较多;各景观类型中以盐碱地、林地、草地和戈壁的转出率较高,而以农田、人居地的转入率较高;研究区景观组份构成没有大的变化,戈壁依然是研究区景观的基质。景观格局变化对区域生态环境的影响主要表现为:农田斑块数量和面积的增加,加大了区域水资源利用压力;林地、草地斑块面积减少,使得平原区绿洲遭受风沙的危害性增大;沙地、戈壁和盐碱地面积减少,使绿洲不同区域生态环境呈现不同变化特征;湿地斑块面积略有增加,对减少艾比湖流域沙尘危害较为有利。  相似文献   

2.
Classifying multi-temporal image data to produce thematic maps and quantify land cover changes is one of the most common applications of remote sensing. Mapping land cover changes at the regional level is essential for a wide range of applications including land use planning, decision making, land cover database generation, and as a source of information for sustainable management of natural resources. Land cover changes in Lake Hawassa Watershed, Southern Ethiopia, were investigated using Landsat MSS image data of 1973, and Landsat TM images of 1985, 1995, and 2011, covering a period of nearly four decades. Each image was partitioned in a GIS environment, and classified using an unsupervised algorithm followed by a supervised classification method. A hybrid approach was employed in order to reduce spectral confusion due to high variability of land cover. Classification of satellite image data was performed integrating field data, aerial photographs, topographical maps, medium resolution satellite image (SPOT 20 m), and visual image interpretation. The image data were classified into nine land cover types: water, built-up, cropland, woody vegetation, forest, grassland, swamp, bare land, and scrub. The overall accuracy of the LULC maps ranged from 82.5 to 85.0 %. The achieved accuracies were reasonable, and the observed classification errors were attributable to coarse spatial resolution and pixels containing a mixture of cover types. Land cover change statistics were extracted and tabulated using the ERDAS Imagine software. The results indicated an increase in built-up area, cropland, and bare land areas, and a reduction in the six other land cover classes. Predominant land cover is cropland changing from 43.6 % in 1973 to 56.4 % in 2011. A significant portion of land cover was converted into cropland. Woody vegetation and forest cover which occupied 21.0 and 10.3 % in 1973, respectively, diminished to 13.6 and 5.6 % in 2011. The change in water body was very peculiar in that the area of Lake Hawassa increased from 91.9 km2 in 1973 to 95.2 km2 in 2011, while that of Lake Cheleleka whose area was 11.3 km2 in 1973 totally vanished in 2011 and transformed into mud-flat and grass dominated swamp. The “change and no change” analysis revealed that more than one third (548.0 km2) of the total area was exposed to change between 1973 and 2011. This study was useful in identifying the major land cover changes, and the analysis pursued provided a valuable insight into the ongoing changes in the area under investigation.  相似文献   

3.
Soil salinization is an important worldwide environmental problem, especially in arid and semi-arid regions. Knowledge of its temporal and spatial variability is crucial for the management of oasis agriculture. The study area has experienced dramatic change in the shallow groundwater table and soil salinization during the 20th century, especially in the past two decades. Classical statistics, geostatistics and geographic information system (GIS) were applied to estimate the spatial variability of the soil salt content in relation to the shallow groundwater table and land use from 1983 to 2005. Consumption of reservoir water for agricultural irrigation was the main cause of a rise in the shallow groundwater table under intense evapotranspiration conditions, and this led indirectly to soil salinization. The area of soil salt accumulation was greater in irrigated than in non-irrigated landscape types with an increasing of 40.04% from 1983 to 2005 in cropland at ∼0.43 t ha−1 year−1, and an increase at ∼0.68 t ha−1 year−1 in saline alkaline land. Maps of the shallow groundwater table in 1985 and 2000 were used to deduce maps for 1983 and 1999, respectively, and the registration accuracy was 99%.  相似文献   

4.
This paper quantifies the allocation of ecosystem services value (ESV) associated with land use pattern and qualitatively examined impacts of land use changes and socio-economic factors on spatiotemporal variation of ESV in the Natural Wetland Distribution Area (NWDA), Fuzhou city, China. The results showed that total ESV of the study area decreased from 4,332.16?×?106 RMB Yuan in 1989 to 3,697.42?×?106 RMB Yuan in 2009, mainly due to the remarkable decreases in cropland (decreased by 55.3 %) and wetland (decreased by 74.2 %). Forest, water, and wetland played major roles in providing ecosystem services, accounting for over 90 % of the total ESV. Based on time series Landsat TM/ETM+ imagery, geographic information system, and historical data, analysis of the spatiotemporal variation of ESV from 1989 to 2009 was performed. It indicated that rapid expansion of urban areas along the Minjiang River resulted in significant changes in land use types, leading to a dramatic decline in ecosystem services. Meanwhile, because of land scarcity and unique ecosystem functions, the emergency of wetland and cropland protection in built-up area has become an urgent task of local authorities to the local government. Furthermore, there was still a significant negative correlation between ESV of cropland and wetland and the GDP. The results suggest that future planning of land use pattern should control encroachment of urban areas into cropland and wetland in addition to scientific and rational policies towards minimizing the adverse effects of urbanization.  相似文献   

5.
The Maldives islands in recent decades have experienced dramatic land-use change. Uninhabited islands were turned into new resort islands; evergreen tropical forests were cut, to be replaced by fields and new built-up areas. All these changes happened without a proper monitoring and urban planning strategy from the Maldivian government due to the lack of national land-use and land-cover (LULC) data. This study aimed to realize the first land-use map of the entire Maldives archipelago and to detect land-use and land-cover change (LULCC) using high-resolution satellite images and socioeconomic data. Due to the peculiar geographic and environmental features of the archipelago, the land-use map was obtained by visual interpretation and manual digitization of land-use patches. The images used, dated 2011, were obtained from Digital Globe’s WorldView 1 and WorldView 2 satellites. Nine land-use classes and 18 subclasses were identified and mapped. During a field survey, ground control points were collected to test the geographic and thematic accuracy of the land-use map. The final product’s overall accuracy was 85%. Once the accuracy of the map had been checked, LULCC maps were created using images from the early 2000s derived from Google Earth historical imagery. Post-classification comparison of the classified maps showed that growth of built-up and agricultural areas resulted in decreases in forest land and shrubland. The LULCC maps also revealed an increase in land reclamation inside lagoons near inhabited islands, resulting in environmental impacts on fragile reef habitat. The LULC map of the Republic of the Maldives produced in this study can be used by government authorities to make sustainable land-use planning decisions and to provide better management of land use and land cover.  相似文献   

6.
In this study we quantified land cover changes in the arid region of Yulin City, Northwest China between 1985 and 2000 using remote sensing and GIS in conjunction with landscape modeling. Land covers were mapped into 20 categories from multitemporal Landsat TM images. Five landscape indices were calculated from these maps at the land cover patches level. It was found that fallow land decreased by 125,148 ha while grassland and woodland increased by 107,975 and 17,157 ha, respectively. Landscape heterogeneity, dominance and fractal dimension changed little during the 15-year period while landscape became more fragmented, with an index rising from 0.56 to 0.58. The major factors responsible for these changes are identified as the change in the government policy on preserving the environment, continued growth in mining, and urbanization.  相似文献   

7.
In recent years, land use/cover dynamic change has become a key subject urgently to be dealt with in the study of global environmental change. This research utilizes the integrated remote sensing and geographic information systems (GIS) in the southern part of Iraq (Basrah Province was taken as a case) to monitor, map, and quantify the environmental change using a 1:250,000 mapping scale. Remote sensing and GIS software were used to classify Landsat TM in 1990 and Landsat ETM+ in 2003 imagery into five land use and land cover (LULC) classes: vegetation land, sand land, urban area, unused land, and water bodies. Supervised classification and normalized difference buildup index, normalized difference vegetation index, normalized difference bare land index, the normalized differential water index, crust index (CI) algorithms, and change detection techniques were adopted in this research and used, respectively, to retrieve its class boundary. An accuracy assessment was performed on the 2003 LULC map to determine the reliability of the map. Finally, GIS software was used to quantify and illustrate the various LULC conversions that took place over the 13-year span of time. The results showed that the urban area, sand lands, and bare lands had increased by the rate of 1.2%, 0.8%, and 0.4% per year, with area expansion from 3,299.1, 4,119.1 km2, and 3,201.9 km2 in 1990 to 3,794.9, 4,557.7, and 3,351.7 km2 in 2003, respectively. While the vegetation cover and water body classes were about 43.5% in 1990, the percentage decreased to about 39.6% in 2003. This study demonstrates the effectiveness of the remote sensing and GIS technologies in detecting, assessing, mapping, and monitoring the environmental changes.  相似文献   

8.
Human modification of land use and land cover change (LUCC) drives the change of landscape patterns and limits the availability of products and services for human and livestock. LUCC can undermine environmental health. Thus, this study aimed to develop an understanding of LUCC in the Yanqi Basin, Xinjiang, China, an arid area experiencing dramatic water and land resource use. A time series of satellite images (1964, 1973, 1989, 1999, and 2009) were used to calculate the index of landscape patterns to study the processes involved in changes to land uses and landscape patterns and the influence of this changes on landscape patterns. The results show that land uses in the Yanqi Basin have changed dramatically since 1964 with grassland being mainly converted to cropland. Landscape fragmentation and diversity have decreased in the study area, although landscape fragmentation increased from 1964 to 1999 and then decreased by 2009. The index of landscape diversity decreased from 1.64 in 1964 to 0.71 in 2009. The heterogeneity and complexity of the landscape increased during this period. In contrast, the index of dominance decreased from 0.85 in 1964 to 0.83 in 2009. Land use change drives landscape patterns of the development of the watershed toward diversity and a fragmented structure. Population growth, economic development, and industrial policies were the dominant driving forces behind LUCC in the Yanqi Basin. Sustainable use of land resources is a significant factor in maintaining economic development and environmental protection in this arid inland river basin.  相似文献   

9.
Urbanisation is a ubiquitous phenomenon with greater prominence in developing nations. Urban expansion involves land conversions from vegetated moisture-rich to impervious moisture-deficient land surfaces. The urban land transformations alter biophysical parameters in a mode that promotes development of heat islands and degrades environmental health. This study elaborates relationships among various environmental variables using remote sensing dataset to study spatio-temporal footprint of urbanisation in Surat city. Landsat Thematic Mapper satellite data were used in conjugation with geo-spatial techniques to study urbanisation and correlation among various satellite-derived biophysical parameters, [Normalised Difference Vegetation Index, Normalised Difference Built-up Index, Normalised Difference Water Index, Normalised Difference Bareness Index, Modified NDWI and land surface temperature (LST)]. Land use land cover was prepared using hierarchical decision tree classification with an accuracy of 90.4 % (kappa?=?0.88) for 1990 and 85 % (kappa?=?0.81) for 2009. It was found that the city has expanded over 42.75 km2 within a decade, and these changes resulted in elevated surface temperatures. For example, transformation from vegetation to built-up has resulted in 5.5?±?2.6 °C increase in land surface temperature, vegetation to fallow 6.7?±?3 °C, fallow to built-up is 3.5?±?2.9 °C and built-up to dense built-up is 5.3?±?2.8 °C. Directional profiling for LST was done to study spatial patterns of LST in and around Surat city. Emergence of two new LST peaks for 2009 was observed in N–S and NE–SW profiles.  相似文献   

10.
Shiyang River basin is located in Hexi Corridor, central-west Gansu province, northwest China. It is an area of typical arid to semiarid features. Based on the TM image of Liangzhou oasis and Minqin oasis in 1986 and 2000, this paper calculated and analyzed the changes of percentage and area of land use/cover types, and also have got the transformation matrix of the landscape mosaics. Dynamics of runoff and exploitation of groundwater, the most important factors influencing land use changes were also analyzed. The ratio of utilized water quantity in upper and middle reaches to that in lower reaches has increased largely from less than 2 before 1970 reached up to more than 8 since 1995; groundwater exploitation has developed progressively. As a result of overuse of groundwater, the groundwater table lowering obviously, the lowering rates reached up to 0.6–0.8 m/year in some place. In addition, the cropping patterns in study area were also distributed irrefficiently that if the planting percentage of water-wasting grain crops dropped to 50% in both oases, it could save irrigating water by 1.2×108 m3 in Liangzhou oasis and 0.2×108 m3 in Minqin oasis one year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号