首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This research has developed mathematical models for computing lifetime greenhouse gas (GHG) emissions associated with materials. The models include embodied carbon (EC) emissions from the manufacture of materials, and GHG emissions from incineration, or landfill gas (LFG) production from landfill disposal of the material beyond their service lives. The models are applicable to all materials; however, their applications here are demonstrated for the lumber from a residential building with 50- and 100-year service lives, and with incineration, landfill, and deconstruction as end-of-life treatments. This paper introduces a new metric for lifetime GHG emissions associated with materials termed “Global Warming Impact of Materials (GWIM).” The GWIM is subdivided into two portions: (i) productive portion (GWIMp) that includes the materials’ emissions until the service life of the facility and (ii) non-productive portion (GWIMnp) which includes the materials’ GHG emissions beyond the service life until they are eliminated from the atmosphere. In place of the current, static, EC measurements (kgCO2e or MTCO2e), this model reports the GWIMs in units of kgCO2e-years or MTCO2e-years, which includes the effects of “time of use” of a facility. Using the models, this paper has computed GHG reductions by deconstruction, with material recoveries of 30%, 50%, and 70% at demolition for reuse, recycle, or repurpose. A 70% material recovery, after a 50-year service life of the building, affected a savings of 47% and 52% if the remaining 30% debris was incinerated or landfilled respectively. All of the values computed using models checked out with manual calculations.  相似文献   

2.
The energy balances of most African countries suggest that biofuels (woodfuel, crop and wood residues, and dung) constitute the largest share of total energy consumption (up to 97% in some sub-Saharan Africa countries). There is, however, an increasing scarcity of woodfuel (fuelwood and charcoal), the major biofuel, and a feared increase in greenhouse gas (GHG) emissions associated with biofuel combustion. The extent of GHG emissions is estimated from biofuel consumption levels that are in turn based on methodologies that might be inaccurate. A questionnaire, supplemented by informal interviews, are used to collect data, yielding information regarding end-uses, technologies used, scale of consumption, determinants of fuel consumption, and interfuel substitution (among other parameters). The survey revealed that cooking is the major end-use, with other common uses, such as space and water heating. Improved stoves that provide better combustion efficiency and, thus, reduce woodfuel consumption have not been widely disseminated and are associated with higher methane emissions than open fires. More than 90% of the households in Africa use open fires. Consumption is presented as per capita for households and as products and quantity of fuel in the small scale industries, commercial, and public sectors. Among the determinants for biofuel consumption are affordability, availability of the fuel, and interfuel substitutions. Flaws in estimating biofuel consumption yield large uncertainties in GHG emissions, with implications for the development of policies on energy planning and environmental protection. However, the application of scenarios can guide policy formulation.  相似文献   

3.
Many governments use technology incentives as an important component of their greenhouse gas abatement strategies. These carrots are intended to encourage the initial diffusion of new, greenhouse-gas-emissions-reducing technologies, in contrast to carbon taxes and emissions trading which provide a stick designed to reduce emissions by increasing the price of high-emitting technologies for all users. Technology incentives appear attractive, but their record in practice is mixed and economic theory suggests that in the absence of market failures, they are inefficient compared to taxes and trading. This study uses an agent-based model of technology diffusion and exploratory modeling, a new technique for decision-making under conditions of extreme uncertainty, to examine the conditions under which technology incentives should be a key building block of robust climate change policies. We find that a combined strategy of carbon taxes and technology incentives, as opposed to carbon taxes alone, is the best approach to greenhouse gas emissions reductions if the social benefits of early adoption sufficiently exceed the private benefits. Such social benefits can occur when economic actors have a wide variety of cost/performance preferences for new technologies and either new technologies have increasing returns to scale or potential adopters can reduce their uncertainty about the performance of new technologies by querying the experience of other adopters. We find that if decision-makers hold even modest expectations that such social benefits are significant or that the impacts of climate change will turn out to be serious then technology incentive programs may be a promising hedge against the threat of climate change.  相似文献   

4.
5.
6.
An observational field study was conducted to assess the feasibility of a community duplicate diet collection method; a dietary monitoring tool that is population-based. The purpose was to establish an alternative procedure to duplicate diet sampling that would be more efficient for a large, defined population, e.g., in the National Children's Study (NCS). Questionnaire data and food samples were collected in a residence so as not to lose the important component of storage, preparation, and handling in a contaminated microenvironment. The participants included nine Hispanic women of child bearing age living in Apopka, FL, USA. Foods highly consumed by Hispanic women were identified based on national food frequency questionnaires and prioritized by permethrin residue concentrations as measured for the Pesticide Data Program. Participants filled out questionnaires to determine if highly consumed foods were commonly eaten by them and to assess the collection protocol for the food samples. Measureable levels of permethrin were found in 54% of the samples. Questionnaire responses indicated that the collection of the community duplicate diet was feasible for a defined population.  相似文献   

7.
Increasing nitrogen (N) immobilization and weed interference in the early phase of implementation of conservation agriculture (CA) affects crop yields. Yet, higher fertilizer and herbicide use to improve productivity influences greenhouse gase emissions and herbicide residues. These tradeoffs precipitated a need for adaptive N and integrated weed management in CA-based maize (Zea mays L.)—wheat [Triticum aestivum (L.) emend Fiori & Paol] cropping system in the Indo-Gangetic Plains (IGP) to optimize N availability and reduce weed proliferation. Adaptive N fertilization was based on soil test value and normalized difference vegetation index measurement (NDVM) by GreenSeeker? technology, while integrated weed management included brown manuring (Sesbania aculeata L. co-culture, killed at 25 days after sowing), herbicide mixture, and weedy check (control, i.e., without weed management). Results indicated that the ‘best-adaptive N rate’ (i.e., 50% basal + 25% broadcast at 25 days after sowing + supplementary N guided by NDVM) increased maize and wheat grain yields by 20 and 14% (averaged for 2 years), respectively, compared with whole recommended N applied at sowing. Weed management by brown manuring (during maize) and herbicide mixture (during wheat) resulted in 10 and 21% higher grain yields (averaged for 2 years), respectively, over the weedy check. The NDVM in-season N fertilization and brown manuring affected N2O and CO2 emissions, but resulted in improved carbon storage efficiency, while herbicide residuals in soil were significantly lower in the maize season than in wheat cropping. This study concludes that adaptive N and integrated weed management enhance synergy between agronomic productivity, fertilizer and herbicide efficiency, and greenhouse gas mitigation.  相似文献   

8.
9.
10.
Concerns about rapid tropical deforestation, and its contribution to rising atmospheric concentrations of greenhouse gases, increase the importance of monitoring terrestrial carbon storage in changing landscapes. Emerging markets for carbon emission offsets may offer developing nations needed incentives for reforestation, rehabilitation, and avoided deforestation. However, relatively little empirical data exists regarding carbon storage in African tropical forests, particularly for those in arid or semi-arid regions. Kenya's 416 km(2) Arabuko-Sokoke Forest (ASF) is the largest remaining fragment of East African coastal dry forest and is considered a global biodiversity hotspot (Myers et al. 2000), but has been significantly altered by past commercial logging and ongoing extraction. Forest carbon storage for ASF was estimated using allometric equations for tree biomass, destructive techniques for litter and herbaceous vegetation biomass, and spectroscopy for soils. Satellite imagery was used to assess land cover changes from 1992 to 2004. Forest and thicket types (Cynometra webberi dominated, Brachystegia spiciformis dominated, and mixed species forest) had carbon densities ranging from 58 to 94 Mg C/ha. The ASF area supported a 2.8-3.0 Tg C carbon stock. Although total forested area in ASF did not change over the analyzed time period, ongoing disturbances, quantified by the basal area of cut tree stumps per sample plot, correlated with decreased carbon densities. Madunguni Forest, an adjoining forest patch, lost 86% of its forest cover and at least 76% of its terrestrial carbon stock in the time period. Improved management of wood harvesting in ASF and rehabilitation of Madunguni Forest could substantially increase terrestrial carbon sequestration in the region.  相似文献   

11.
12.
A pot experiment was carried out on a Typic ustipsamment to study the effect of Cd concentration on the yield of wheat (Triticum aestivum) and soybean (Glycine max). Cd levels taken were 1, 5, 10, 20, 40, 80, and 160 g g-1 of soil. Three different statistical procedures were employed to evaluate the phytotoxicity limits. The non-linear regression technique was found to be more effective in calculating C 0 (threshold concentration) and C 100 (toxic concentration) in comparison to Cate and Nelson (1971) and Beckett and Davis (1977) procedures. This technique was unaffected by the nature of the distribution of the data and did not require any initial value of concentration as a starting point.  相似文献   

13.
A multi-level pesticide assessment methodology has been developed to permit regulatory personnel to undertake a variety of assessments on the potential for pesticide used in agricultural areas to contaminate the groundwater regime at an increasingly detailed geographical scale of investigation. A multi-level approach accounts for a variety of assessment objectives and detail required in the assessment, the restrictions on the availability and accuracy of data, the time available to undertake the assessment, and the expertise of the decision maker. The level 1: regional scale is designed to prioritize districts having a potentially high risk for groundwater contamination from the application of a specific pesticide for a particular crop. The level 2: local scale is used to identify critical areas for groundwater contamination, at a soil polygon scale, within a district. A level 3: soil profile scale allows the user to evaluate specific factors influencing pesticide leaching and persistence, and to determine the extent and timing of leaching, through the simulation of the migration of a pesticide within a soil profile. Because of the scale of investigation, limited amount of data required, and qualitative nature of the assessment results, the level 1 and level 2 assessment are designed primarily for quick and broad guidance related to management practices. A level 3 assessment is more complex, requires considerably more data and expertise on the part of the user, and hence is designed to verify the potential for contamination identified during the level 1 or 2 assessment. The system combines environmental modelling, geographical information systems, extensive databases, data management systems, expert systems, and pesticide assessment models, to form an environmental information system for assessing the potential for pesticides to contaminate groundwater.  相似文献   

14.
Pollen data have been recorded at Novi Sad in Serbia since 2000. The adopted method of producing pollen counts has been the use of five longitudinal transects that examine 19.64% of total sample surface. However, counting five transects is time consuming and so the main objective of this study is to investigate whether reducing the number to three or even two transects would have a significant effect on daily average and bi-hourly pollen concentrations, as well as the main characteristics of the pollen season and long-term trends. This study has shown that there is a loss of accuracy in daily average and bi-hourly pollen concentrations (an increase in % ERROR) as the sub-sampling area is reduced from five to three or two longitudinal transects. However, this loss of accuracy does not impact on the main characteristics of the season or long-term trends. As a result, this study can be used to justify changing the sub-sampling method used at Novi Sad from five to three longitudinal transects. The use of two longitudinal transects has been ruled out because, although quicker, the counts produced: (a) had the greatest amount of % ERROR, (b) altered the amount of influence of the independent variable on the dependent variable (the slope in regression analysis) and (c) the total sampled surface (7.86%) was less than the minimum requirement recommended by the European Aerobiology Society working group on Quality Control (at least 10% of total slide area).  相似文献   

15.
Technological advances in the field of underwater video have led to an exponential increase in the use of drifting cameras (DC) and remotely operated vehicles (ROVs) to monitor the diversity, abundance, and size structure of marine life. Main advantages of DCs relative to ROVs are their lower costs and the much simpler logistics required to operate them. This study compares the performance of a new low-cost DC system equipped with a novel measuring device with that of a standard DC bearing an array of laser pointers. The new DC, which can be operated from a small boat, carries a pair of parallel steel “whiskers” that are dragged on the seabed within the field of view of the camera, providing a scale for measuring and estimating the density of benthic biota. An experiment conducted using an array of objects of known sizes laid on the bottom showed that its performance in terms of both size and density estimation was similar to that of the standard technique based on laser pointers. Measurement errors had a negligible negative bias (??2.3%) and a standard deviation that ranged between 13 and 8% for objects from 25 to 110 mm in size. The whiskers offered a simplified method for density estimation that avoids the need to calculate the width of the field of view, thus reducing the video processing time by around 60% with respect to the standard method. Briefly, the new system offers an efficient low-cost alternative for benthic ecology studies conducted on soft or non-irregular bottoms.  相似文献   

16.
17.
18.
Tree damage, gauged by the amount of defoliation, is one of the basic criteria used to determine treatments for protected and economic forests. Monitoring should include an assessment of the degree of tree damage in different spatial scales. Therefore, in addition to the commonly applied large-area methods, small-area methods should be used. The aim of the paper is to present the results of the accuracy assessment of a small-area method, proposed by Podlaski (2005) [Podlaski, R. (2005). Inventory of the degree of tree defoliation in small areas. Forest Ecology and Management, 215, 361–377], for monitoring the degree of tree damage. The degree of tree damage was shown in sub-blocks P3 of the system of information on natural environment (SINUS). To estimate the spatial distribution of the degree of tree defoliation, survey sampling, based on simple random sampling with replacement (SRSWR), was used. The degree of damage to fir (Abies alba Mill.) and beech (Fagus sylvatica L.) was analysed in the Święty Krzyż forest section in the Świętokrzyski National Park. The maximum total estimation errors for the proportion of trees with a degree zero of damage, and with second and third degrees of damage together (for α = 0.05) were at most 30.8% for fir and 24.3% for beech trees. For standard, small-area evaluations, these are satisfactory values. In the Święty Krzyż forest section, the number of P3 sub-blocks with 0.00–5.00% of undamaged trees and with 80.01–100.00% of moderately- or severely-damaged trees was significantly greater for fir than for beech. These results indicate that the fir population was unhealthier than the beech group in the study area. P3 sub-blocks of the SINUS system, in which the proportion of the healthiest trees was highest, were situated at the forest margin, bordering on meadows and arable fields (in the case of fir) and forming dense patches consisting of several sub-blocks, or occurring singly in the whole study area (in the case of beech). The results show the significant differentiation of forest tree health in small areas.  相似文献   

19.
Quantitative knowledge of organic chemical release into the environment is essential to understand and predict human exposure as well as to develop rational control strategies for any substances of concern. While significant efforts have been invested to characterize and screen organic chemicals for hazardous properties, relatively less effort has been directed toward estimating emissions and hence also risks. Here, a rapid throughput method to estimate emissions of discrete organic chemicals in commerce has been developed, applied and evaluated to support screening studies aimed at ranking and identifying chemicals of potential concern. The method builds upon information in the European Union Technical Guidance Document and utilizes information on quantities in commerce (production and/or import rates), chemical function (use patterns) and physical-chemical properties to estimate emissions to air, soil and water within the OECD for five stages of the chemical life-cycle. The method is applied to 16,029 discrete substances (identified by CAS numbers) from five national and international high production volume lists. As access to consistent input data remains fragmented or even impossible, particular attention is given to estimating, evaluating and discussing uncertainties in the resulting emission scenarios. The uncertainty for individual substances typically spans 3 to 4 orders of magnitude for this initial tier screening method. Information on uncertainties in emissions is useful as any screening or categorization methods which solely rely on threshold values are at risk of leading to a significant number of either false positives or false negatives. A limited evaluation of the screening method's estimates for a sub-set of about 100 substances, compared against independent and more detailed emission scenarios presented in various European Risk Assessment Reports, highlights that up-to-date and accurate information on quantities in commerce as well as a detailed breakdown on chemical function are critically needed for developing more realistic emission scenarios.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号