首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
运用大气挥发性有机物(VOCs)快速在线连续自动监测系统,于2018年7月对南通市区环境空气中VOCs进行观测,分析VOCs的浓度状况、组成特征、对臭氧生成潜势的贡献及主要来源。结果表明:观测期间共检出100种VOCs,总挥发性有机物(TVOCs)的平均体积分数为(38. 18±23. 63)×10^-9,各物种体积分数从大到小顺序依次为烷烃>含氧有机物>芳香烃>卤代烃>烯、炔烃;芳烃和烯烃是最主要的活性物种,间/对二甲苯、甲苯、邻二甲苯等是VOCs的关键活性组分;利用PMF模型解析得到VOCs的主要污染来源是工业排放与溶剂使用、机动车尾气排放、燃料挥发排放和生物源排放。  相似文献   

2.
为探究威海市秋季挥发性有机物(VOCs)污染特征及来源,于2021年9月10—20日采用手工加密监测法对威海市秋季大气中VOCs进行监测,分析了气象因素对臭氧(O3)及其前体物的影响和VOCs污染特征,并利用正交矩阵因子模型(PMF)方法对VOCs来源进行了研究。结果表明,威海市温度对O3生成影响明显,尤其是高温、低湿、扩散较差气象条件下,有利于O3前体物的反应消耗,促使O3生成及累积。观测期间,威海市秋季φ(VOCs)平均值为47.84×10-9,VOCs中体积分数占比最高的为含氧挥发性有机物(OVOCs),占比为58.0%,其次为烷烃(21.6%)、卤代烃(10.2%)。O3生成潜势(OFP)平均值为393.95μg/m3,对OFP的贡献占比最高的为OVOCs(74.1%),其次为芳香烃(12.6%)、烷烃(7.0%)和烯烃(5.4%)。PMF源解析结果显示,机动车尾气排放源、工艺过程源、船舶尾气排放源和溶剂使用源是威海市秋季VOCs排放主要来源,贡献占比分别为30.4%,23.9%,21.1%,16.5%。控制机动车排放和工艺过程排放是控制威海市秋季VOCs污染的重要途径。  相似文献   

3.
于2018年4—9月对泰州市环境空气中挥发性有机物(VOCs)组分开展现场观测,结合观测数据分析该市大气中VOCs的时空分布特征。结果表明:观测期间泰州市环境空气中VOCs平均摩尔比为45.1 nmol/mol,其中含氧挥发性有机物占比为57.8%;受周边排放源和地理位置影响,下风向点位的VOCs测定值高于其他点位;VOCs月均最高值出现在6月,与臭氧月均最高值出现时间一致,7—9月气团出现老化,导致臭氧生成能力减弱;观测期间VOCs中甲苯/苯(T/B)比值范围为0.201 9~5.130 3,且大部分T/B比值2,说明溶剂、油气和液化石油气挥发等排放源对泰州市环境空气中VOCs的影响较为显著。  相似文献   

4.
2013年10月对广东鹤山大气中挥发性有机化合物(VOCs)变化特征、臭氧生成潜势和来源进行了研究。结果表明,观测期间测得的VOCs总平均值为26.6×10-9,表现为烷烃>苯系物>烯烃;烯烃日间值变化幅度较大,在清晨达到最大值;苯系物与一次污染物CO的变化趋势十分接近;烷烃的峰值出现时间较苯系物有所提前,且在短时间内迅速升高,表明观测点周边可能存在排放源;大气中各类VOCs的臭氧生成潜势(OFP)贡献表现为苯系物>烯烃>烷烃;从物种来看,乙烯等10种物质对总OFP的贡献占到了80.4%;观测期间测得的OFP贡献较大的VOCs物种主要来源于石化源、油漆溶剂和汽油挥发源。  相似文献   

5.
基于2019年沈阳市4个不同功能区挥发性有机物(VOCs)小时分辨率的在线监测数据,分析了环境空气中VOCs的污染特征及来源。结果表明,观测期间沈阳市环境空气中VOCs日平均体积分数为(31.5±13.3)×10~(-9),4个功能区VOCs体积分数均呈现出冬季明显大于夏季的特征;工业区环境空气中VOCs体积分数明显高于其他功能区。商业交通居民混合区、文化居民混合区、郊区VOCs体积分数呈现明显双峰结构,工业区双峰结构不明显。工业区VOCs以新鲜排放为主,而其他3个区域为老化气团的传输。工业区春、夏季环境空气中VOCs来源包括燃料挥发源(26.90%)、溶剂与涂料源(17.69%)、燃烧源(16.40%)、化工源(15.69%)、交通源(7.57%)和炼油炼焦源(4.15%)。秋、冬季VOCs的来源包括燃烧源(30.77%)、溶剂与涂料源(20.26%)、燃料挥发源(18.79%)、化工源(11.54%)、炼油炼焦源(9.34%)和交通源(5.51%)。  相似文献   

6.
嘉善夏季典型时段大气VOCs的臭氧生成潜势及来源解析   总被引:2,自引:0,他引:2  
2016年8—9月对长三角南部区域嘉善的大气中挥发性有机化合物(VOCs)变化特征、臭氧生成潜势、臭氧生成控制敏感性和来源进行了研究。结果表明,观测期间VOCs总平均值为27.3×10-9,表现为烷烃卤代烃含氧有机物芳香烃烯烃炔烃;VOCs浓度变化较大,早晚出现峰值,与风速呈负相关的关系,与温度没有明显相关性。VOCs的臭氧生成潜势表现为芳香烃烯烃烷烃含氧有机物卤代烃炔烃。甲苯等10种物质对臭氧生成潜势的贡献达到63%。夏季典型时段臭氧生成对VOCs较敏感,属于VOCs控制区。观测期间测得对VOCs浓度贡献较大的物种来源于溶剂涂料和工业排放。  相似文献   

7.
2020年7月对兰州市城区大气挥发性有机物进行连续24 h测定,研究其污染特征和臭氧生成潜势等,并进行来源解析。结果表明:兰州超级站点 VOCs的平均质量浓度为99.59 μg/m3,各类挥发性有机物中烷烃占比最大,占总挥发性有机物浓度的33.81%;对挥发性有机物进行臭氧生成潜势分析,排名靠前的物种为甲苯、乙烯、乙酸乙烯酯;利用PMF模型对挥发性有机物进行源解析,结果显示VOCs来源贡献为机动车源(31.30%)、油气挥发或泄漏(24.10%)、溶剂使用源(18.60%)、燃烧和化工工艺源(17.20%)、天然源(8.80%)。建议将控制机动车排放、油气挥发和泄漏、溶剂使用等作为消减城市大气挥发性有机物和臭氧污染的重点。  相似文献   

8.
对常州市VOCs人为源进行系统划分,运用国内外排放因子研究成果及常州市各排放源调研结果,采用排放因子法建立了2017年常州市分类型、分辖区(市)的人为源VOCs排放清单。结果表明,2017年常州市人为源VOCs排放总量约为9. 662×10~4t,其中化石燃料燃烧源、工业过程源、移动源、非工业溶剂使用源、油品储运源、生物质燃烧源、固废污水处理源和餐饮源排放分别占排放总量的1. 9%,47. 2%,9. 0%,27. 6%,9. 4%,2. 6%,0. 4%和1. 9%。工业过程源中黑色(有色)金属冶炼及压延加工业、非金属矿物制品业、化学原料和化学品制造业、机械装备制造业、交通设备制造业、纺织业是重点行业;武进区、溧阳市、新北区3个工业发达的区域VOCs排放量明显高于常州其他几个辖区,占全市总排放量的71%;各辖区(市)的重点排放源存在差异,其中武进区、溧阳市、新北区以工业过程源为主,金坛区、天宁区、钟楼区以非工业溶剂使用源为主。  相似文献   

9.
2019年7-8月在四川省遂宁市实验学校、遂宁中学、金鱼小学、石溪浩4个点位同步开展为期20d的挥发性有机物(VOCs)离线观测,分析了遂宁市VOCs浓度时空分布特征、臭氧生成潜势(OFP)和VOCs主要来源。遂宁市TVOC体积浓度为39.4×10-9,占比较高的组分为OVOCs和烷烃,体积浓度分别为15.6×10-9和13.3×10-9,占比分别为39.5%和33.6%。遂宁中学、金鱼小学、石溪浩24 h平均体积浓度分别为29.8 ×10-9、58.4 ×10-9、30.0×10-9;加密点实验学校的小时平均浓度为22.9×10-9。遂宁市总OFP为166.7 μg/m3,占比最大的为烯烃(33.1%)。实验学校、遂宁中学、金鱼小学、石溪浩OFP浓度分别为101.2、134.4、243.6、122.1 μg/m3。金鱼小学采样点位于工业园区下风向,受工业园区企业排放源影响,VOCs浓度和OFP值均明显高于其他点位。PMF模型源解析结果表明:遂宁市VOCs来源占比最大的为工业排放源,达32%;其次为机动车尾气源、燃烧源,占比均达17%;油气挥发源、天然源、溶剂使用源分别占13%、11%、10%。工业源、机动车尾气来源占比最高的均是金鱼小学,分别为39%、30%;天然源占比较高的是实验学校(13%)和石溪浩(10%)。  相似文献   

10.
为了解成渝地区中小城市VOCs污染特征及其来源,选取该区域典型代表城市-遂宁市为研究对象,利用2019年不同时间不同功能区106种VOCs离线观测数据,研究了该市VOCs污染水平和时空特征,分析了VOCs主要成分及其对臭氧的影响,并进行了源解析。结果显示:(1)遂宁市大气中VOCs平均体积分数为39.4×10-9,8月的浓度较高,其空间排序为工业区>城郊区≈文教区。(2)OVOCs和烷烃是VOCs主要组分,占比达73.4%,且不受时间和空间限制;工业区不同组分浓度均高于城郊区和文教区,城郊区和文教区的同组分占比相差较小;丙酮和乙烷是VOCs中体积分数最大的物种,占总体积分数的37.8%。(3)VOCs组分对OFP贡献率顺序为烯烃>芳香烃>OVOCs>烷烃>炔烃>卤代烃>有机硫,前4类组分对OFP贡献率达97.6%,烯烃对OFP贡献率不仅每日最大,而且还呈现“城郊区>文教区>工业区”空间分布态势;异戊二烯、乙烯是OFP最大的物种,在不同功能区其OFP均高于其他物种,是遂宁市臭氧防治关注重点。(4)VOCs排放源及...  相似文献   

11.
依据生态环境部2021年6月发布的《排放源统计调查产排污核算方法和系数手册》,结合本地实测数据,在对汽油车颗粒物(PM)排放系数进行测算的基础上,核算了2020年江苏省机动车PM、氮氧化物(NO_(X))、挥发性有机物(VOC_(S))的排放总量,分析了机动车排放污染分布特征及与大气质量的耦合关系。结果表明:2020年江苏省机动车PM、NO_(X)、VOC_(S)排放量分别为0.5×10^(4),3.71×10^(5),1.17×10^(5) t。从区域分布来看,苏州、南京、无锡3市的3项污染物排放总量及NO_(X)、VOC_(S)排放量均位列前3位,PM排放量位列前3位的是苏州、徐州、无锡。从车型、燃料类型和排放阶段来看,国Ⅳ及以下排放标准的汽油小型客车是机动车VOC_(S)排放控制的重点,国Ⅲ排放标准的重型柴油货车是机动车PM和NO_(X)排放控制的重点。分析区域机动车PM排放量与大气中PM_(2.5)来源解析结果的耦合关系,其间存在不同程度的正相关性,控制机动车污染对改善大气环境会产生积极成效,南京、徐州和盐城3市的成效会尤为明显。  相似文献   

12.
利用VOCs在线监测技术,对2010年宁波市北仑区空气内的VOCs的浓度、组成、变化规律及来源进行分析研究。结果表明,在北仑区域内的16种VOCs中,苯、甲苯、二甲苯、乙苯和己烷的比例占到了总数的82.9%,且该5种有机物浓度存在较为典型的季节性变化规律和日变化规律;采用CMD模型法对VOCs的来源进行解析后发现,北仑区域内的VOCs主要来源于汽车尾气、汽油蒸气和石油液化气,而且汽车尾气的贡献值要比一些大城市低得多,且夏季和冬季的成分源贡献率存在明显差异。  相似文献   

13.
通过收集福建省福州、厦门、莆田、泉州、漳州和龙岩等重点地区人为源活动水平数据,通过排放因子法进行合理估算,计算2016年福建省重点地区人为源的VOCs排放量。结果表明,2016年福建省重点地区人为源VOCs排放量为47 262.8 t。VOCs排放主要由石油炼制、化工、建筑材料制造、塑料制品和食品饮料加工等行业贡献,占总排放量的62.0%。泉州市是VOCs污染排放的主要贡献城市,占全省重点地区VOCs总排放量的48.9%。  相似文献   

14.
成都市人为源挥发性有机物排放清单及特征   总被引:1,自引:0,他引:1  
基于成都市实地调查和环境统计等活动水平数据,采用排放因子法和计算模型等,编制了2014年成都市人为源VOCs排放清单,并完成了空间分配和不确定性分析。成都市人为源VOCs排放量为15.8×10~4t,其中化石燃料固定燃烧源、工艺过程源、溶剂使用源、移动源、储存运输源、其他源排放量分别为0.5×10~4、3.8×10~4、6.0×10~4、4.9×10~4、0.4×10~4、2.2×10~4t,溶剂使用源为最大人为排放源,其次是移动源和工艺过程源。木材加工业为最大工业贡献源,然后依次是医药制造业、非金属矿物制品业、化学原料、化学制品制造业、汽车制造业等。成都市人为源82%的VOCs排放量分布于二、三圈层的工业园区,而中心城区主要为移动源和建筑施工所贡献,其排放分布已随建成区联片发展而形成整体。排放清单活动水平数据可靠性较高,而排放因子存在一定不确定性。  相似文献   

15.
对大连市2015年秋冬季环境空气中VOCs进行采样分析,获得其组成、含量、昼夜和季节变化规律,分析不同类别VOCs的来源,并计算不同VOCs物种的臭氧生成潜势(OFP)。结果表明:大连市环境空气中秋季VOCs平均体积浓度(55.81×10-9)略高于冬季(42.66×10-9);秋季VOCs以羰基化合物和烷烃为主,而冬季VOCs以烷烃和烯炔烃为主。大连环境空气中光化学反应的主要VOCs类别为羰基化合物、烯炔烃和芳香烃,主要物种为丙烷、乙烷、正丁烷和乙烯。羰基化合物含量高与机动车尾气及医院大量试剂的使用有关,烷烃主要来源于汽油车与液化石油气(LPG)燃烧排放,芳香烃主要由机动车排放贡献。各类别VOCs的组分含量与其OFP并不一致,大连市环境空气中各类VOCs的OFP由高到低依次为羰基化合物>芳香烃>烯炔烃>烷烃。  相似文献   

16.
Air samples were collected in Beijing from June through August 2008, and concentrations of volatile organic compounds (VOCs) in those samples are here discussed. This sampling was performed to increase understanding of the distributions of their compositions, illustrate the overall characteristics of different classes of VOCs, assess the ages of air masses, and apportion sources of VOCs using principal compound analysis/absolute principal component scores (PCA/APCS). During the sampling periods, the relative abundance of the four classes of VOCs as determined by the concentration-based method was different from that determined by the reactivity approach. Alkanes were found to be most abundant (44.3–50.1%) by the concentration-based method, but aromatic compounds were most abundant (38.2–44.5%) by the reactivity approach. Aromatics and alkenes contributed most (73–84%) to the ozone formation potential. Toluene was the most abundant compound (11.8–12.7%) during every sampling period. When the maximum incremental reactivity approach was used, propene, toluene, m,p-xylene, 1-butene, and 1,2,4-trimethylbenzene were the five most abundant compounds during two sampling periods. X/B, T/B, and E/B ratios in this study were lower than those found in other cities, possibly due to the aging of the air mass at this site. Four components were extracted from application of PCA to the data. It was found that the contribution of vehicle exhaust to total VOCs accounted for 53% of VOCs, while emissions due to the solvent use contributed 33% of the total VOCs. Industrial sources contributed 3% and biogenic sources contributed 11%. The results showed that vehicle exhausts (i.e., unburned vehicle emissions + vehicle internal engine combustion) were dominant in VOC emissions during the experimental period. The solvent use made the second most significant contribution to ambient VOCs.  相似文献   

17.
杭州市大气污染物排放清单及特征   总被引:15,自引:9,他引:6  
以杭州市区为研究区域,通过调查整合多套污染源数据库及其他统计资料,研究文献报道及模型计算的各种污染源排放因子,获得杭州市区各行业PM10、PM2.5、SO2、NOx、CO、VOCs、NH3等污染物的排放量,建立了杭州市区2010年1 km×1 km大气污染物排放清单。结果表明,2010年杭州市区PM10、PM2.5、SO2、NOx、CO、VOCs和NH3的排放总量分别为7.96×104、4.02×104、7.23×104、8.98×104、73.90×104、39.56×104、3.32×104t。从排放源的行业分布来看,机动车尾气排放是杭州市区大气污染物最重要排放源之一,对PM10、PM2.5、NOx、CO和VOCs的贡献分别达到14.4%、27.1%、40.3%、21.4%、31.1%。道路扬尘、电厂锅炉、工业炉窑、植被、畜禽养殖对不同污染物分别有着重要贡献,道路扬尘对PM10和PM2.5的贡献分别为44.6%和20.0%、电厂锅炉对SO2和NOx的贡献分别为37.0%和25.7%、工业炉窑对CO的贡献为41.5%、植被排放对VOCs的贡献为27.1%、畜禽养殖对NH3的贡献为76.5%。从空间分布来看,萧山区和余杭区对SO2、NH3和植被排放BVOC的贡献要显著高于主城区;而主城区机动车对PM2.5、NOx和VOCs的贡献分别达到36.3%、56.0%和47.4%,较市区范围内显著增加,表明机动车尾气排放已成为杭州主城区大气污染最重要的来源之一。  相似文献   

18.
通过对南京市机动车排气污染物的年检监测,表明南京市的汽油车、柴油车、摩托车排气合格率总体呈上升趋势,2002年全市机动车排气监测总合格率为99.9%,比1993年上升了8.6个百分点;汽车尾气达标率也呈上升趋势,2002年达83.8%,比1993年上升了2.6个百分点。对机动车排气路检结果表明,CO超标的车辆占84.4%,CO、HC两项指标都超标的车辆占31.1%。对各类汽油助力车排气监测结果表明,二冲程汽油助力车尾气中CO、HC排放量要高于四冲程汽油助力车的排放量。对各类正三轮摩托车排气抽检结果表明,大部分四冲程正三轮摩托车尾气排放污染物能达标,且排气管无碳烟;二冲程正三轮摩托车尾气中HC值偏高,排气管碳烟明显。  相似文献   

19.
运用排放因子法估算了江苏省主要工业行业VOCs排放量,结果显示石油炼制、有机化工、医药制造、装备涂装是排放量大的重点行业。基于江苏省VOCs排放与控制现状的分析,阐述了石油化工行业是工业VOCs管理控制的重点和难点,在研究总结国内外先进管理经验的基础上,提出了江苏省应在加快制定排放标准、制定企业监管措施、加强监控能力建设等建议,对地方大气环境管理具有参考价值。  相似文献   

20.
This study aimed to locate VOC emission sources and characterized their emitted VOCs. To avoid interferences from vehicle exhaust, all sampling sites were positioned inside the refinery. Samples, taken with canisters, were analyzed by GC–MS according to TO-14 method. The survey period extended from Febrary 2004 to December 2004, sampling twice per season. To interpret a large number of VOC data was a rather difficult task. This study featured using ordinary application software, Excel and Surfer, instead of expensive one like GIS, to overcome it. Consolidating data into a database on Excel facilitated retrieval, statistical analysis and presentation in the form of either table or graph. The cross analysis of the data suggested that the abundant VOCs were alkanes, alkenes, aromatics and cyclic HCs. Emission sources were located by mapping the concentration distribution of these four types of VOCs in terms of contour maps on Surfer. During eight surveys, five emission sources were located and their VOCs were characterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号