首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to investigate the distribution of the total petroleum hydrocarbons (TPH) in groundwater and soil, a total of 71 groundwater samples (26 unconfined groundwater samples, 37 confined groundwater samples, and 8 deeper confined groundwater samples) and 80 soil samples were collected in the Songyuan oilfield, Northeast China, and the vertical variation and spatial variability of TPH in groundwater and soil were assessed. For the groundwater from the unconfined aquifer, petroleum hydrocarbons were not detected in three samples, and for the other 23 samples, concentrations were in the range 0.01–1.74 mg/l. In the groundwater from the confined aquifer, petroleum hydrocarbons were not detected in two samples, and in the other 35 samples, the concentrations were 0.04–0.82 mg/l. The TPH concentration in unconfined aquifer may be influenced by polluted surface water and polluted soil; for confined aquifer, the injection wells leakage and left open hole wells may be mainly responsible for the pollution. For soils, the concentrations of TPH varied with sampling depth and were 0–15 cm (average concentration, 0.63 mg/g), >40–55 cm (average concentration, 0.36 mg/g), >100–115 cm (average concentration, 0.29 mg/g), and >500–515 cm (average concentration, 0.26 mg/g). The results showed that oil spillage and losses were possibly the main sources of TPH in soil. The consequences concluded here suggested that counter measures such as remediation and long-term monitoring should be commenced in the near future, and effective measures should be taken to assure that the oilfields area would not be a threat to human health.  相似文献   

2.
Soil vapor extraction (SVE) and bioremediation (BR) are two of the most common soil remediation technologies. Their application is widespread; however, both present limitations, namely related to the efficiencies of SVE on organic soils and to the remediation times of some BR processes. This work aimed to study the combination of these two technologies in order to verify the achievement of the legal clean-up goals in soil remediation projects involving seven different simulated soils separately contaminated with toluene and xylene. The remediations consisted of the application of SVE followed by biostimulation. The results show that the combination of these two technologies is effective and manages to achieve the clean-up goals imposed by the Spanish Legislation. Under the experimental conditions used in this work, SVE is sufficient for the remediation of soils, contaminated separately with toluene and xylene, with organic matter contents (OMC) below 4 %. In soils with higher OMC, the use of BR, as a complementary technology, and when the concentration of contaminant in the gas phase of the soil reaches values near 1 mg/L, allows the achievement of the clean-up goals. The OMC was a key parameter because it hindered SVE due to adsorption phenomena but enhanced the BR process because it acted as a microorganism and nutrient source.  相似文献   

3.
Medium (i.e. 15 years) and long-term (i.e. 20 years) impact of irrigation using secondary-treated municipal wastewater (TWW) was assessed on two agricultural soil samples, denoted by E and G, respectively, in the vicinity of El Hajeb region (Southern Tunisia). Soil pH, electrical conductivity particle size grading, potential risk of salinity, water holding capacity and chemical composition, as well as organic matter content, pathogenic microorganisms and heavy metal concentrations in the TWW-irrigated (E and G) and rainwater-irrigated (T) soils at various depths, were monitored and compared during a 5-year experiment. Our study showed that bacterial abundance is higher in sandy–clayey soil, which has an enhanced ability to retain moisture and nutrients. The high level of bacterial flora in TWW-irrigated soils was significantly (p?<?0.05) correlated (r?=?~0.5) with the high level of OM. Avoidance assays have been used to assess toxic effects generated by hazards in soils. The earthworms gradually avoided the soils from the surface (20 cm) to the depth (60 cm) of the G transect and then the E transect, preferring the T transect. The same behaviour was observed for springtails, but they seem to be less sensitive to the living conditions in transects G and E than the earthworms. The avoidance response test of Eisenia andrei was statistically correlated with soil layers at the sampling sites. However, the avoidance response test of Folsomia candida was positively correlated with silt-clay content (+0.744*) and was negatively correlated with sand content (?0.744*).  相似文献   

4.
This paper presents a study that aims at evaluating the leaching characteristics of petroleum contaminated soils as well as their application in hot mix asphalt concrete. Soil samples are environmentally characterized in terms of their total heavy metals and hydrocarbon compounds and leachability. The total petroleum hydrocarbon (TPH) present in the PCS before and after treatment was determined to be 6.8% and 5.3% by dry weight, indicating a reduction of 1% in the TPH of PCS due to the current treatment employed. Results of the total heavy metal analysis on soils indicate that the concentrations of heavy metals are lower when extraction of the soil samples is carried out using hexane in comparison to TCE. The results show that the clean soils present in the vicinity of contaminated sites contain heavy metals in the following decreasing order: nickel (Ni), followed by chromium (Cr), zinc (Zn), copper (Cu), lead (Pb), and vanadium (V). The current treatment practice employed for remediation of the contaminated soil reduces the concentrations of nickel and chromium, but increases the concentrations of all remaining heavy metals.  相似文献   

5.
The purpose of this study was to assess contaminated soil and groundwater for the urban redevelopment of a rapid transit railway and a new mega-shopping area. Contaminated soil and groundwater may interfere with the progress of this project, and residents and shoppers may be exposed to human health risks. The study area has been remediated after application of first remediation technologies. Of the entire area, several sites were still contaminated by waste materials and petroleum. For zinc (Zn) contamination, high Zn concentrations were detected because waste materials were disposed in the entire area. For petroleum contamination, high total petroleum hydrocarbon (TPH) and hydrocarbon degrading microbe concentrations were observed at the depth of 7 m because the underground petroleum storage tank had previously been located at this site. Correlation results suggest that TPH (soil) concentration is still related with TPH (groundwater) concentration. The relationship is taken into account in the Spearman coefficient (α).  相似文献   

6.
The introduction of earthworms into soils contaminated with metals and metalloids has been suggested to aid restoration practices. Eisenia veneta (epigeic), Lumbricus terrestris (anecic) and Allolobophora chlorotica (endogeic) earthworms were cultivated in columns containing 900 g soil with 1130, 345, 113 and 131 mg kg(-1) of As, Cu, Pb and Zn, respectively, for up to 112 days, in parallel with earthworm-free columns. Leachate was produced by pouring water on the soil surface to saturate the soil and generate downflow. Ryegrass was grown on the top of columns to assess metal uptake into biota. Different ecological groups affected metals in the same way by increasing concentrations and free ion activities in leachate, but anecic L. terrestris had the greatest effect by increasing leachate concentrations of As by 267%, Cu by 393%, Pb by 190%, and Zn by 429% compared to earthworm-free columns. Ryegrass grown in earthworm-bearing soil accumulated more metal and the soil microbial community exhibited greater stress. Results are consistent with earthworm enhanced degradation of organic matter leading to release of organically bound elements. The degradation of organic matter also releases organic acids which decrease the soil pH. The earthworms do not appear to carry out a unique process, but increase the rate of a process that is already occurring. The impact of earthworms on metal mobility and availability should therefore be considered when inoculating earthworms into contaminated soils as new pathways to receptors may be created or the flow of metals and metalloids to receptors may be elevated.  相似文献   

7.
Lead is a highly toxic element and forms stable compounds with phosphate, which is commonly used to immobilize Pb in soils. However, few studies have monitored the long-term stability of immobilized Pb, which is a critical factor in determining the effectiveness of the in situ stabilization technique. Both soluble and insoluble phosphate compounds were tested for Pb immobilization, and its subsequent mobility and bioavailability in a contaminated soil from a shooting range. Adding tricalcium phosphate, hydroxyapatite, rock phosphate and potassium dihydrogen phosphate reduced the concentration of ammonium-nitrate-extractable Pb in the contaminated soil by 78.6%, 48.3%, 40.5% and 80.1%, respectively. Insoluble phosphate amendments significantly reduced leached Pb concentration from the column while soluble potassium dihydrogen phosphate compound increased P and Pb concentrations in the leachate. Rock phosphate reduced Pb accumulation in earthworms by 21.9% compared to earthworms in the control treatment. The long-term stability of immobilized Pb was evaluated after 2 years' incubation of the contaminated soil with rock phosphate or soluble phosphate compounds. Bioavailable Pb concentration as measured by simple bioavailability extraction test (SBET) showed the long-term stability of immobilized Pb by P amendments. Therefore, Pb immobilization using phosphate compounds is an effective remediation technique for Pb-contaminated soils.  相似文献   

8.
Occurrence of phthalic acid esters in Gomti River Sediment, India   总被引:2,自引:0,他引:2  
Cadmium and lead are important environmental pollutants with high toxicity to animals and human. Soils, though have considerable metal immobilizing capability, can contaminate food chain via plants grown upon them when their built-up occurs to a large extent. Present experiment was carried out with the objective of quantifying the limits of Pb and Cd loading in soil for the purpose of preventing food chain contamination beyond background concentration levels. Two separate sets of pot experiment were carried out for these two heavy metals with graded levels of application doses of Pb at 0.4–150 mg/kg and Cd at 0.02–20 mg/kg to an acidic light textured alluvial soil. Spinach crop was grown for 50 days on these treated soils after a stabilization period of 2 months. Upper limit of background concentration levels (C ul) of these metals were calculated through statistical approach from the heavy metals concentration values in leaves of spinach crop grown in farmers’ fields. Lead and Cd concentration limits in soil were calculated by dividing C ul with uptake response slope obtained from the pot experiment. Cumulative loading limits (concentration limits in soil minus contents in uncontaminated soil) for the experimental soil were estimated to be 170 kg Pb/ha and 0.8 kg Cd/ha. Based on certain assumptions on application rate and computed cumulative loading limit values, maximum permissible Pb and Cd concentration values in municipal solid waste (MSW) compost were proposed as 170 mg Pb/kg and 0.8 mg Cd/kg, respectively. In view of these limiting values, about 56% and 47% of the MSW compost samples from different cities are found to contain Pb and Cd in the safe range.  相似文献   

9.
This study reports the level of total petroleum hydrocarbons (TPH) and trace heavy metals (lead, copper, and cadmium) in soil samples collected randomly from Iyana–Iba garage, Lagos State University bus stop, Adeniran Ogunsanya College of Education bus stop, and a control site off Lusada–Atan road, near Crawford University, Igbesa, Ogun state. TPH was estimated gravimetrically after Soxhlet extraction and column clean up, while soil metals were determined by atomic absorption spectrometry using mineral acid digestion. For TPH, the sites have mean values of 19.43 ± 1.27, 16.11 ± 1.85, and 11.43 ± 4.33 mg/g with a control mean value of 0.33 ± 0.16 mg/g. For trace heavy metals, cadmium was not detected. However, the mean levels of lead are 4.24 ± 3.10, 3.72 ± 0.60, and 3.70 ± 1.32 μg/g, respectively, whereas mean copper concentrations are 20.63 ± 9.02, 19.35 ± 3.61, and 16.76 ± 3.02 μg/g in all sites, respectively, compared to the control mean of 0.25 ± 0.13 and 5.99 ± 1.23 μg/g for lead and copper, respectively. Sites studied have higher levels of TPH and metals compared to the control soil samples. This is indicated by a statistically significant difference found between the concentration of analyzed elements in soils collected along Lagos–Badagry expressway and the control site.  相似文献   

10.
A simple and accurate method of determining metalaxyl and cymoxanil in pepper and soil was developed by ultra-performance liquid chromatography–photodiode array detection. The limits of detection were 0.015 mg/kg for metalaxyl and 0.003 mg/kg for cymoxanil. The limits of quantification were 0.05 mg/kg for metalaxyl in pepper and soil as well as 0.01 mg/kg for cymoxanil in pepper and soil. Recoveries of pepper and soil were investigated at three spiking levels and ranged within 77.52 to 102.05 % for metalaxyl and 87.15 to 103.21 % for cymoxanil, with relative standard deviations below 9.30 %. For field experiments, the half-lives of metalaxyl were 3.2 to 3.9 days in pepper and 4.4 to 9.5 days in soil at the three experimental locations in China. At harvest, pepper samples were found to contain metalaxyl and cymoxanil well below the maximum residue limit MRLs of the European Union (EU) following the recommended dosage and the interval of 21 days after last application.  相似文献   

11.
The lead–zinc industry in the Bukowno region of southern Poland has polluted the surface layer of the surrounding soils mainly with lead (Pb), cadmium (Cd), zinc (Zn), arsenic (As), and thallium (Tl). Analysis of six soil profiles, taken on the east side of the postflotation waste site of the Mining and Metallurgical Plants ZGH "Boles?aw" in Bukowno, showed that they were podzol soils, taking form of loose sands with neutral pH and reducing conditions. Concentration of organic matter in the horizons ranged from 2 to 80 %. The main components of the mineral soil were quartz, carbonates, K-feldspars, plagioclases, and micas (sericite). The highest total concentrations of metals were found in the O, A, and B horizons. Over 90 % of the Cd content, 80 % of the Pb content, 60 % of the Zn content, ~60 % of the Tl content, and 20 % of the As content occurred as mobile forms. The corresponding total concentrations were 10 mg/kg Cd, 922 mg/kg Pb, 694 mg/kg Zn, <1 mg/kg Tl, and <5 mg/kg As. This can potentially be taken up from the soil and transported in the trophic chain. Comparing the total metal content with the legal limits in Poland, it is observed, that the investigated soils exceeded the permissible levels of Cd, Pb, and Zn for agricultural soils. Arsenic and Tl are not reflected in the chemical quality of soil classifications.  相似文献   

12.
Monitoring of heavy metal contamination plume in soils can be helpful in establishing strategies to minimize its hazardous impacts to the environment. The objective of this study was to apply a new approach of visualization, based on tridimensional (3D) images, of pseudo-total (extracted with concentrated acids) and exchangeable (extracted with 0.5 mol L?1 Ca(NO3)2) lead (Pb) concentrations in soils of a mining and metallurgy area to determine the spatial distribution of this pollutant and to estimate the most contaminated soil volumes. Tridimensional images were obtained after interpolation of Pb concentrations of 171 soil samples (57 points × 3 depths) with regularized spline with tension in a 3D function version. The tridimensional visualization showed great potential of use in environmental studies and allowed to determine the spatial 3D distribution of Pb contamination plume in the area and to establish relationships with soil characteristics, landscape, and pollution sources. The most contaminated soil volumes (10,001 to 52,000 mg Pb kg?1) occurred near the metallurgy factory. The main contamination sources were attributed to atmospheric emissions of particulate Pb through chimneys. The large soil volume estimated to be removed to industrial landfills or co-processing evidenced the difficulties related to this practice as a remediation strategy.  相似文献   

13.
A simple and accurate method for the determination of bismerthiazol and its metabolite 2-amino-5-mercapto-1,3,4-thiadiazole was developed in Chinese cabbage and soil by high-performance liquid chromatography-diode array detection in this study. The limits of detection were 0.06 mg/kg for bismerthiazol and 0.03 mg/kg for 2-amino-5-mercapto-1,3,4-thiadiazole, respectively. Recoveries of cabbage and soil were investigated at three spiking levels and were in the range of 84.0–96.0 % for bismerthiazol and 71.0–74.6 % for 2-amino-5-mercapto-1,3,4-thiadiazole, with relative standard deviations below 7.0 %. For field experiments, the half-life of bismerthiazol was 2.4–2.5 days in Chinese cabbage and 2.5–4.8 days in soil at the two experimental locations in China. Dissipation residues of 2-amino-5-mercapto-1,3,4-thiadiazole were lower than 0.72 mg/kg. Terminal residues of bismerthiazol and its metabolite were less than 3.0 and 0.3 mg/kg in Chinese cabbage, respectively. No bismerthiazol or metabolite residues were detected in soil on days 5, 7, 10, and 14 after the last spraying at the two dosage levels.  相似文献   

14.
The abilities of sorghum (Sorghum bicolor L.) and oat (Avena sativa L.) to take up heavy metals from soils amended with ethylenediaminetetraacetic acid (EDTA) were assessed under greenhouse conditions. Both plants were grown in two soils contaminated with heavy metals (Gujranwala—silty loam and Pacca—clay loam). The soils were treated with 0, 0.625, 1.25, and 2.5 mM EDTA kg?1 soil applied at both 45 and 60 days after sowing (DAS); the experiment was terminated at 75 DAS. Addition of EDTA significantly increased concentrations of Cd, Cr, and Pb in roots and shoots, and bio-concentration factors and phytoextraction rates were also increased. Post-harvest soil analysis showed that soluble fractions of metals were also increased significantly. The increase in Cd was ≈ 3-fold and Pb was ≈ 15-fold at the highest addition of EDTA in Gujranwala soil; in the Pacca soil, the increase was less. Similarly, other phytoremediation factors, such as metal translocation, bio-concentration factor, and phytoextraction, efficiency were also maximum when soils were treated with 2.5 mM EDTA kg?1 soil. The study demonstrated that sorghum was better than oat for phytoremediation.  相似文献   

15.
Imidacloprid is extensively used on a broad range of crops worldwide as seed dressing, soil treatment, and foliar application. Hence, the degradation potential of bacterial strains from sugarcane-growing soils was studied in liquid medium for subsequent use in bioremediation of contaminated soils. The microbe cultures degrading imidacloprid were isolated and enriched on Dorn’s broth containing imidacloprid as sole carbon source maintained at 28 °C and Bacillus alkalinitrilicus showed maximum potential to degrade imidacloprid. Clay loam soil samples were fortified with imidacloprid at 50, 100, and 150 mg kg?1 along with 45?×?107 microbe cells under two opposing sets of conditions, viz., autoclaved and unautoclaved. To study degradation and metabolism of imidacloprid under these two conditions, samples were drawn at regular intervals of 7, 14, 28, 35, 42, 49, and 56 days. Among metabolites, three metabolites were detected, viz., 6-chloronicotinic acid, nitrosimine followed by imidacloprid-NTG under both the conditions. Total imidacloprid residues were not found to follow the first-order kinetics in both types of conditions. This paper reports for the first time the potential use of pure cultures of soil-isolated native bacterium B. alkalinitrilicus and also its use along with natural soil microflora for remediation of imidacloprid-contaminated soils.  相似文献   

16.
The Special Monitoring of Applied Response Technologies (SMART) program was used during the Deepwater Horizon oil spill as a strategy to monitor the effectiveness of sea surface dispersant use. Although SMART was implemented during aerial and vessel dispersant applications, this analysis centers on the effort of a special dispersant missions onboard the M/V International Peace, which evaluated the effectiveness of surface dispersant applications by vessel only. Water samples (n?=?120) were collected from background sites, and under naturally and chemically dispersed oil slicks, and were analyzed for polycyclic aromatic hydrocarbons (TPAHs), total petroleum hydrocarbons (TPH), and a chemical marker of Corexit® (dipropylene glycol n-butyl ether, DPnB). Water chemistry results were analyzed relative to SMART field assessments of dispersant effectiveness (“not effective,” “effective,” and “very effective”), based on in situ fluorometry. Chemistry data were also used to indirectly determine if the use of dispersants increased the risk of acute effects to water column biota, by comparison to toxicity benchmarks. TPAH and TPH concentrations in background, and naturally and chemically dispersed samples were extremely variable, and differences were not statistically detected across sample types. Ratios of TPAH and TPH between chemically and naturally dispersed samples provided a quantitative measure of dispersant effectiveness over natural oil dispersion alone, and were in reasonable agreement with SMART field assessments of dispersant effectiveness. Samples from “effective” and “very effective” dispersant applications had ratios of TPAH and TPH up to 35 and 64, respectively. In two samples from an “effective” dispersant application, TPHs and TPAHs exceeded acute benchmarks (0.81 mg/L and 8 μg/L, respectively), while none exceeded DPnB’s chronic value (1,000 μg/L). Although the primary goal of the SMART program is to provide near real-time effectiveness data to the response, and not to address concerns regarding acute biological effects, the analyses presented here demonstrate that SMART can generate information of value to a larger scientific audience. A series of recommendations for future SMART planning are also provided.  相似文献   

17.
Two independent field trials were performed in Guangdong and Hubei, China in 2011 to investigate the dissipation and residue levels of triforine in strawberry and soil. A fast and simple method using gas chromatography with electron capture detector was developed and validated to determine triforine levels in strawberry and soil. The average recovery of triforine in strawberry ranged from 87.46 to 104.32 % with a relative standard deviation (RSD) of 0.72 to 4.54 %; that in soil ranged from 83.82 to 103.01 % with an RSD of 3.89 to 4.36 %. The limit of quantification of the proposed method was 0.01 mg/kg for both strawberry and soil. The results suggest that the triforine dissipation curves followed the first-order kinetic. The half-lives of triforine in strawberry from Guangdong and Hubei were 3.58 and 4.42 days, respectively; those in soil were 3.53 and 4.10 days, respectively. The terminal residues of triforine in strawberry ranged from 0.032 to 0.264 mg/kg at preharvest intervals of 0.5, 1, and 3 days. These values are lower than the maximum residue limit of 1 mg/kg in strawberry set by the Codex Alimentarius Commission.  相似文献   

18.
Crude oil exploration and production has been the largest anthropogenic factor contributing to the degradation of Momoge Wetland, China. To study the effects of crude oil on wetland soils, we examined the total petroleum hydrocarbon (TPH), total organic carbon (TOC), total nitrogen (TN), and total phosphorus (TP), as well as pH and electricity conductivity (EC) from oil sites and uncontaminated areas in the Momoge Wetland. All contaminated areas had significantly higher (p < 0.05) contents of TPH and TOC, but significantly lower (p < 0.05) TN contents than those of the uncontaminated areas. Contaminated sites also exhibited significantly higher (p < 0.05) pH values, C/N and C/P ratios. For TP contents and EC, no significant changes were detected. The level of soil contamination and impact of oil residuals on soil quality greatly depended on the length of time the oil well was in production. Oil residuals had caused some major changes in the soils’ chemical properties in the Momoge Wetland.  相似文献   

19.
Mixtures of polycyclic aromatic hydrocarbons (PAHs) and heavy metals are of major concern in contaminated soil. Biodegradation of PAHs in metal-contaminated soils is complicated because metals are toxic and cannot be degraded by biological processes. This investigation considered the effects of Zn and Cu (50, 100, 500 and 1,000 mg/kg) on 14C-phenanthrene biodegradation in soil over 60-day contact time. The presence of Zn at all concentrations and low concentrations of Cu (50 and 100 mg/kg) had no significant effect (p?>?0.05) on the development of phenanthrene catabolism; however, at higher Cu concentrations, the development of phenanthrene catabolism and bacterial cell numbers were significantly reduced (p?<?0.05). This suggests that Cu is more toxic than Zn to soil microbial PAH catabolic activity. Metal/PAH-contaminated soils represent one of the most difficult remedial challenges and insights into PAH biodegradation in the presence of metals is necessary in order to assess the potential for bioremediation.  相似文献   

20.
An oil spill polluted site at Ogbodo-Isiokpo in Ikwere Local Government Area of Rivers State in southern Nigeria, was identified for study following three successive reconnaissance surveys of oil fields in the Agbada west plain of Eastern Niger Delta. A sampling area of 200 m × 200 m was delimited at the oil spill impacted site using the grid technique and soils were collected at surface (0–15 cm) and subsurface (15–30 cm) depths from three replicate quadrats. A geographically similar, unaffected area, located 50 m adjacent to the polluted site, was chosen as a control (reference) site. Total extractable hydrocarbon contents of the polluted soils ranged from 3.02–4.54 and 1.60–4.20 mg/kg (no overlap in standard errors) at surface and subsurface depths respectively. The concentrations of two “diagnostic” trace heavy metals, nickel (Ni) and vanadium (V), which are normal constituents of crude oil, were also determined in the soils by atomic absorption spectrophotometric method after pre-extraction of cations with dithionite–citrate carbonate. Ni varied from 0.15 to 1.65 mg/kg in the polluted plots and from 0.18 to 0.82 mg/kg in the unpolluted plots; vanadium varied from 0.19 to 0.70 mg/kg in the polluted plots and from 0.14 to 0.38 mg/kg in the unpolluted plots. Ni and V were more enhanced (p < 0.05) in the oil-polluted soils, especially at subsurface depth. Whilst the oil spillage could be said to be indirectly responsible for the enhanced concentrations of nickel and vanadium via the injection and availability of the petroleum hydrocarbons that might have increased the activities of biodegradation on site, the physico-chemical properties of the soils and inherent mobility of metals, as well as the intense rainfall and flooding that characterized the period of study, may have also contributed, at least in part, to these enhanced concentrations. Such levels of Ni and V may result to enhanced absorption by plants, which may bring about possible bioaccumulation in such plants and the animals that depend on them for survival and all of these may lead to toxic reactions along the food chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号