首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim was to investigate the toxicity of selected metal oxide nanoparticles (MO-NPs) on the brine shrimp Artemia salina, by evaluating mortality and behavioural and biochemical responses. Larvae were exposed to tin(IV) oxide (stannic oxide (SnO2)), cerium(IV) oxide (CeO2) and iron(II, III) oxide (Fe3O4) NPs for 48 h in seawater, with MO-NP suspensions from 0.01 to 1.0 mg/mL. Mortality and behavioural responses (swimming speed alteration) and enzymatic activities of cholinesterase, glutathione-S-transferase and catalase were evaluated. Although the MO-NPs did not induce any mortality of the larvae, they caused changes in behavioural and biochemical responses. Swimming speed significantly decreased in larvae exposed to CeO2 NPs. Cholinesterase and glutathione-S-transferase activities were significantly inhibited in larvae exposed to SnO2 NPs, whereas cholinesterase activity significantly increased after CeO2 NP and Fe3O4 NP exposure. Catalase activity significantly increased in larvae exposed to Fe3O4 NPs. In conclusion, swimming alteration and cholinesterase activity represent valid endpoints for MO-NP exposure, while glutathione-S-transferase and catalase activities appear to be NP-specific.  相似文献   

2.
There is worldwide concern over the increase use of nanoparticles (NPs) and their ecotoxicological effect. It is not known if the annual production of tons of industrial nanoparticles (NPs) has the potential to impact terrestrial microbial communities, which are so necessary for ecosystem functioning. Here, we have examined the consequences of adding the NPs particularly the metal oxide (CuO, ZnO) on CH4 oxidation activity in vertisol and the abundance of heterotrophs, methane oxidizers, and ammonium oxidizers. Soil samples collected from the agricultural field located at Madhya Pradesh, India, were incubated with either CuO and ZnO NPs or ionic heavy metals (CuCl2, ZnCl2) separately at 0, 10, and 20 μg g?1 soil. CH4 oxidation activity in the soil samples was estimated at 60 and 100 % moisture holding capacity (MHC) in order to link soil moisture regime with impact of NPs. NPs amended to soil were highly toxic for the microbial-mediated CH4 oxidation, compared with the ionic form. The trend of inhibition was Zn 20?>?Zn 10?>?Cu 20?>?Cu 10. NPs delayed the lag phase of CH4 oxidation to a maximum of 4-fold and also decreased the apparent rate constant k up to 50 % over control. ANOVA and Pearson correlation analysis (α?=?0.01) revealed significant impact of NPs on the CH4 oxidation activity and microbial abundance (p?<?0.0001, and high F statistics). Principal component analysis (PCA) revealed that PC1 (metal concentration) rendered 76.06 % of the total variance, while 18.17 % of variance accounted by second component (MHC). Biplot indicated negative impact of NPs on CH4 oxidation and microbial abundance. Our result also confirmed that higher soil moisture regime alleviates toxicity of NPs and opens new avenues of research to manage ecotoxicity and environmental hazard of NPs.  相似文献   

3.
Different biological variables of tadpoles, including survival, development and growth rates, and biomarkers [cholinesterases, glutathione-S-transferases (GST), and blood cell morphology] were evaluated in two anuran species, Scinax squalirostris (Hylidae) and Leptodactylus mystacinus (Leptodactylidae), using in situ experimental chambers in a rice field (RF) sprayed with insecticide Lambda-cyhalothrin (LTC) by aircraft in Santa Fe Province, Argentina. We found a significant decrease in body weight (0.62?±?0.04 g) of L. mystacinus and an increased development rate of S. squalirostris in individuals from RF (41?±?1; Gosner) with respect to individuals from the reference site (RS: 0.93?±?0.04 g and 37?±?0; respectively). In S. squalirostris, individuals from RF mean values of butyrylcholinesterase activities decreased at 48 (4.09?±?0.32 nmol min-1 mg-1 of TP) and 96 h (3.74?±?0.20 nmol min-1 mg-1 of TP), whereas inhibition of acetylcholinesterase was observed at 96 h (47.44?±?2.78 nmol min-1 mg-1 of TP). In L. mystacinus from RF, an induction of acetylcholinesterase activity was observed at 96 h (36.01?±?1.09 nmol min-1 mg-1 of TP). Glutathione-S-transferase levels varied between species, being higher in L. mystacinus individuals but lower in S. squalirostris from RF at 48 (272.29 ±11.78 and 71.87?±?1.70 nmol min-1 mg-1 of TP; respectively) and 96 h (279.25?±?13.06 and 57.62?±?4.58 nmol min-1 mg-1 of TP, respectively). Blood cell parameters revealed a lower number of mitotic cells (MC: 0.36?±?0.31%o for S. squalirostris and 0.08?±?0.05 %o for L. mystacinus) and higher number of eosinophils (E: 3.45?±?1.75 %o for S. squalirostris and 7.64?±?0.98 %o for L. mystacinus) in individuals from the RF than in individuals from the RS (MC: 2.55?±?0.74 %o for S. squalirostris and 1.87?±?0.72%o for L. mystacinus; and E: 0.13?±?0.09 for S. squalirostris and 3.20?±?0.80 for L. mystacinus). Overall, our results demonstrate the existence of apparent differences in sensitivity between species in a series of sublethal responses to short-term exposure in RF after the application of Lambda-cyhalothrin. We suggest that the integral use of biological endpoints (development and growth) together with biomarkers (cholinesterase, GST, and blood cell parameters) may be a promising integral procedure for investigating pesticide exposure in wild frog populations.  相似文献   

4.
Recently, interest has developed for using essential oils from Western juniper (Juniperus occidentalis) foliage and Port Orford cedar (Chamaecyparis lawsoniana) heartwood in commercial products such as pest repellents and cosmetics. In order to gauge the relative toxicological risk that these oils pose to freshwater and marine organisms, the acute aquatic toxicity of these oils was evaluated using OPPTS guidelines to the cladoceran Daphnia magna, the rainbow trout Oncorhynchus mykiss and the green alga Selenastrum capricornutum. For western juniper foliage oil, no toxicity was exhibited toward D. magna or O. mykiss, even at 5.0 mg/L (the highest concentration tested and limit of solubility). For toxicity to S. capricornutum using algal cell density, the 72 and 96 h EC50 value was 1.7 mg/L and the no observable effect concentration (NOEC) was 0.63 mg/L. For Port Orford cedar heartwood oil, no toxicity was exhibited toward O. mykiss or S. capricornutum, even at 5.0 mg/L (the highest concentration tested and limit of solubility). The 48-h D. magna EC50 value was 1.9 mg/L; the NOEC values for algal cell density were 1.25 mg/L (72 h) and 0.63 mg/L (96 h). In summary, this study shows that western juniper foliage and Port Orford cedar heartwood oils demonstrate little to no risk to aquatic organisms.  相似文献   

5.
Nematodes offer perspectives for ecotoxicological research as their characters and most of toxicity assessment focused on Caenorhabditis elegans. In order to enrich the limited numbers of nematode species used for toxicity test, this study assessed the subacute effects of copper and zinc to the life history characters of nematode Acrobeloides nanus. Compared with control, the 72-h effective concentration (EC)50, EC20, and EC10 for reproduction in A. nanus were 1.35, 0.49, and 0.20 mg/L, respectively, for Cu and 829.46, 330.29, and 163.90 mg/L, respectively, for Zn. The EC10 for growth at 72 h and 96 h of the 2nd generation in A. nanus were 1.13 and 0.97 mg/L, respectively, for Cu, and 353.46 and 284.20 mg/L, respectively, for Zn. During the exposure, the effect of copper–zinc on reproduction was less than additive, and the copper–zinc effect on growth changed from a synergistic to antagonistic.  相似文献   

6.
Our objective was to evaluate changes in water quality parameters during 1983–2007 in a subtropical drinking water reservoir (area: 7 km2) located in Lake Manatee Watershed (area: 338 km2) in Florida, USA. Most water quality parameters (color, turbidity, Secchi depth, pH, EC, dissolved oxygen, total alkalinity, cations, anions, and lead) were below the Florida potable water standards. Concentrations of copper exceeded the potable water standard of <30 μg?l?1 in about half of the samples. About 75 % of total N in lake was organic N (0.93 mg?l?1) with the remainder (25 %) as inorganic N (NH3-N: 0.19, NO3-N: 0.17 mg?l?1), while 86 % of total P was orthophosphate. Mean total N/P was <6:1 indicating N limitation in the lake. Mean monthly concentration of chlorophyll-a was much lower than the EPA water quality threshold of 20 μg?l?1. Concentrations of total N showed significant increase from 1983 to 1994 and a decrease from 1997 to 2007. Total P showed significant increase during 1983–2007. Mean concentrations of total N (n?=?215; 1.24 mg?l?1) were lower, and total P (n?=?286; 0.26 mg?l?1) was much higher than the EPA numeric criteria of 1.27 mg total N l?1 and 0.05 mg total P l?1 for Florida’s colored lakes, respectively. Seasonal trends were observed for many water quality parameters where concentrations were typically elevated during wet months (June–September). Results suggest that reducing transport of organic N may be one potential option to protect water quality in this drinking water reservoir.  相似文献   

7.
This study investigated the biomarker responses of the earthworm, Eudrilus eugeniae, exposed to sublethal concentrations of benzene, toluene and xylene (BTX) for a time span of 28 days. Lipid peroxidation (LPO) and histopathological alterations were examined. Toxicological evaluations of BTX were carried out against E. eugeniae. On the basis of the 96-h LC50 value, xylene (1.212 mg/kg) was found to be the most toxic followed by toluene (1.335 mg/kg) and benzene (1.896 mg/kg) was the least toxic. The exposure of earthworms to sublethal concentrations (1/10th and 1/100th of 96 h LC50) of BTX premixed with the substrate (loamy and humus soil) induced pathological changes in the clitella such as severe lesion, necrosis and dark brown pigments. The result of the lipid peroxidation assay showed a significant increase in oxidative damage with LPO values ranging from 2.58–7.8 nM/g in exposed animals when compared to 0.07 nM/g in the control group. The findings from this study suggest the use of LPO and histopathology as useful biomarkers of exposure for early detection of petroleum related stress in terrestrial ecosystems  相似文献   

8.
The bioaccumulation and toxicity of arsenate (arsenic (As)(V)) was studied using three cultures of cyanobacterial species—Oscillatoria tenuisa, Anabaena affinis, and Microcystis aeruginosa—that were isolated from a eutrophic reservoir. The As(V) uptake depended on the cyanobacterial species, the growth phase of the cyanobacteria, the duration of exposure, and the initial concentration of As(V). The specific growth rates of the three cultures immediately following the logarithmic phase were 0.033–0.041 L/day when the initial concentration of As(V) was 50 mg/L. These rates were 2.3–3.6 times less than those in the original culture medium without As(V). The rate of intake of As(V) in the logarithmic phase cultures greatly exceeded that in the stationary cultures. The accumulation of As(V) by the three cultures increased rapidly within 1 week from the initial value of 3.23?×?10?2–5.40?×?10?2 to 5.06?×?10?1–6.73?×?10?1 ng/cell in the logarithmic phase. The effective concentrations (EC50) of As(V) for inhibiting the growth of the three cyanobacterial species growth of at 72 h followed the order Oscillatoria tenuisa (3.8 mg/L)?>?A. affinis (2.6 mg/L)?>?M. aeruginosa (1.2 mg/L). The cyanobacterial species that was most sensitive to As(V) was M. aeruginosa. Preliminary results from SEM-map studies suggest most of the As(V) in Microcystis aeruginosa accumulated in the cytoplasm (intercellular), while in O. tenuisa and A. affinis, a large proportion of As(V) bound to the cell wall (extracellular). These differences were understood with reference to the variation among the metabolic properties and morphological characteristics of the cyanobacterial species.  相似文献   

9.
Six Indian cultivars of Vigna radiata L. (HUM-1, HUM-2, HUM-6, HUM-23, HUM-24 and HUM-26) were exposed with ambient and elevated (ambient + 10 ppb ozone (O3) for 6 h?day?1) level of O3 in open top chambers. Ozone sensitivity was assessed by recording the magnitude of foliar visible injury and changes in various physiological parameters. All the six cultivars showed visible foliar symptoms due to O3, ranging 7.4 to 55.7 % injured leaf area. O3 significantly depressed total chlorophyll, photosynthetic rate (Ps), quantum yield (F v/F m) and total biomass although the extent of variation was cultivar specific. Cultivar HUM-1 showed maximum reduction in Ps and stomatal conductance. The fluorescence parameters also indicated maximum damage to PSII reaction centres of HUM-1. Injury percentage, chlorophyll loss, Ps, F v/F m and total biomass reduced least in HUM-23 depicting highest O3 resistance (R%).  相似文献   

10.
Fenton oxidation was compared with Fenton oxidation coupled with ultrasonication (Fenton?+?US) for sludge dewatering. Different Fenton reagent (H2O2, Fe2+) concentrations, pH, and reaction times were studied in different systems on the basis of the specific resistance to filtration (SRF) and capillary suction time (CST). It was found that Fenton?+?US can significantly reduce Fe2+ and H2O2 dosages and reaction times. After ultrasonication of the system at pH 3, with an ultrasonic frequency of 25 kHz and a sound energy density of 100 W/L, the Fe2+, H2O2 dosage, and reaction time were reduced by 66.7, 75.0, and 75.0 %, respectively, when compared with Fenton oxidation at the same dewaterability of sludge. The microstructure of sludge and hydroxyl radical (·OH) density in Fenton oxidation and Fenton?+?US was further examined. Fenton?+?US produced more?·?OH in a sludge system than did individual Fenton oxidation. The concentration of?·?OH in Fenton?+?US fell from 79.2 to 6 mg/L over 3.5 h, while the concentration of?·?OH in Fenton oxidation fell from 59.6 to 1 mg/L over 2 h, thus destroying the microstructure of sludge more effectively. Sludge treated using Fenton?+?US for 30 min showed a much thinner and looser microstructure.  相似文献   

11.
The water quality of the Akyatan Lagoon was characterized using hydrochemical methodology. The lagoon is located on the Mediterranean coast and is the largest wetland ecosystem in Turkey. In addition, the lagoon is classified as a hyper-salinity wetland. Water samples were collected monthly between December 2007 and November 2008. Eleven stations within the lagoon were determined, and triplicate grab samples were obtained from each station to characterize water quality as follows: T °C, pH, total alkalinity (TAlk), dissolved oxygen (DO), total dissolved solids (TDS), salinity, electrical conductivity (EC), and main anions, including chloride (Cl?), nitrates (NO3 ?), and sulfate (SO4 2?). Results from selected stations indicated varying TDS, EC, salinity, and Cl? concentrations, from 20,892 to 175,824 mg/L, from 35.7 to 99.6 mS/cm, from 22.3 to 71.0 ppt, and from 14,819 to 44,198 mg Cl?/L, respectively. Data indicated that the spatial distribution of water quality parameters was significantly affected by freshwater input via the constructed drainage channels which collect water from a catchment area and discharge water into the lagoon as a point source, thus preventing drainage water to reach the lagoon as a nonpoint source.  相似文献   

12.
Obtaining and analyzing the specific inherent optical properties (SIOPs) of water bodies is necessary for bio-optical model development and remote sensing-based water quality retrievals and, further, for related ecological studies of aquatic ecosystems. This study aimed to measure and analyze the specific absorption and backscattering coefficients of the main water constituents in Poyang Lake, China. The specific absorption and/or backscattering coefficients of the main water constituents at 85 sampling sites (47 in 2010 and 38 in 2011) were measured and analyzed as follows: (1) the concentrations of chlorophyll a (C CHL), suspended particulate matter (C SPM) (including suspended particulate inorganic matter (C SPIM) and suspended particulate organic matter (C SPOM)), and the absorption coefficients of total particulate (a p), phytoplankton (a ph), and non-pigment particulate (a d) were measured in the laboratory; (2) the total backscattering coefficients at six wavelengths of 420, 442, 470, 510, 590, and 700 nm, including the contribution of pure water, were measured in the field with a HydroScat-6 backscattering sensor, and the backscattering coefficients without the contribution of pure water (b b) were then derived by subtracting the backscattering coefficients of pure water from the total backscattering coefficients; (3) the specific absorption coefficients of total particulate ( $ a_{\mathrm{p}}^{ * } $ ), phytoplankton ( $ {a_{{\mathrm{ph}}}}^{ * } $ ), and non-pigment particulate ( $ a_{\mathrm{d}}^{ * } $ ) were calculated by dividing a p, a ph, and a d by C SPM, C CHL, and C SPIM, respectively, while the specific backscattering coefficients of total suspended particulate matter ( $ b_{\mathrm{b}}^{ * } $ ) were calculated by dividing b b by C SPM; and (4) the $ {a_{{\mathrm{ph}}}}^{ * } $ , $ a_{\mathrm{d}}^{ * } $ , $ a_{\mathrm{p}}^{ * } $ and $ b_{\mathrm{b}}^{ * } $ of the remaining samples (46 in 2010 and 36 in 2011) were visualized and analyzed, and their relations to C CHL, C SPIM or C SPM were studied, respectively. The main results are summarized as follows: (1) the $ {a_{{\mathrm{ph}}}}^{ * } $ values at 440 nm were 0.0367–0.7203 m2?mg?1 with a mean of 0.1623?±?0.1426 m2?mg?1 in 2010 and 0.0319–0.7735 m2?mg?1 with a mean of 0.3145?±?0.1961 m2?mg?1 in 2011; there existed significant, negative, and moderate correlations between $ {a_{{\mathrm{ph}}}}^{ * } $ and C CHL at 400–700 nm in 2010 and 2011 (p?<?0.05); (2) The $ a_{\mathrm{d}}^{ * } $ values at 440 nm were 0.0672–0.2043 m2?g?1 with a mean of 0.1022?±?0.0326 m2?g?1 in 2010 and 0.0559–0.1347 m2?g?1 with a mean of 0.0953?±?0.0196 m2?g?1 in 2011; there existed negative correlations between $ a_{\mathrm{d}}^{ * } $ and C SPIM, while the correlations showed overall decreasing and increasing trends before and after around 575 nm with increasing wavelengths, respectively; (3) The $ a_{\mathrm{p}}^{ * } $ values at 440 nm were 0.0690–0.1929 m2?g?1 with a mean of 0.1036?±?0.0298 m2?g?1 in 2010 and 0.0571–0.1321 m2?g?1 with a mean of 0.1014?±?0.0191 m2?g?1 in 2011, and the negative correlations between $ a_{\mathrm{p}}^{ * } $ and C SPM were found in both years; (4) The $ b_{\mathrm{b}}^{ * } $ at the six wavelengths generally decreased with increasing wavelengths, while the $ b_{\mathrm{b}}^{ * } $ values at 420 nm were lower than those at 442 nm for some samples; the correlation between $ b_{\mathrm{b}}^{ * } $ and C SPM increased with increasing wavelength. Such results can only represent the SIOPs during the sampling time periods, and more measurements and analyses considering different seasons need to be carried out in the future to comprehensively understand the SIOPs of Poyang Lake.  相似文献   

13.
Fipronil belongs to phenylpyrazole class of chemical compounds. Degradation of fipronil in sandy loam soil was investigated under field conditions by applying fipronil (Regent 5 % SC) at 50 (T 1) and 100 g a.i. ha?1 (T 2) in field. Samples were drawn periodically in triplicate on 0 (1 h after treatment), 1, 3, 7, 10, 15, 30, 60, and 90 days after treatment and analyzed on GC-ECD system equipped with capillary column. The residues of fipronil in both the doses dissipated in the range of 93.33–100 % in 90 days. Limit of detection (LOD) and limit of determination (LODe/LOQ) were 0.0003 and 0.001 mg kg?1, respectively. Dissipation followed a biphasic first-order kinetics with half-life values of 10.81 and 9.97 days for fipronil alone and 8.14 and 13.05 days for fipronil along with metabolites in soil at (T 1) and (T 2) treatments, respectively.  相似文献   

14.
A comprehensive attempt has been made to evaluate the diurnal and spatial pattern of CO2 exchange between the atmosphere and water along the estuarine track of Indian Sundarbans during the two summer months, April and May, 2011. Rigorous field observations were carried out which included the hourly measurements of total alkalinity, pH, fugacity of CO2 in ambient air and water surface, dissolved oxygen, and chlorophyll a. The estuarine water was found rich in total alkalinity and was oversaturated with CO2 throughout the diurnal cycle in the two stations situated at the inner and middle estuary, respectively, whereas an entirely reverse situation was observed in the outer fringes. The fugacity of CO2 in water ranged from 152 to 657 μatm during the study period. The percentage of over-saturation in inner and middle estuary varied from 103 to 168 and 103 to 176 %, respectively, whereas the degree of under-saturation in the outer estuary lied between 40 and 99 %. Chlorophyll a concentrations were found higher in the outer estuary (12.3?±?2.2 mg?m?3) compared to the middle (6.4?±?0.6 mg?m?3) and inner parts (1.6?±?0.2 mg?m?3), followed by a similar decreasing pattern in nutrient availability from the outer to inner estuary. The sampling stations situated at the inner and middle estuary acted as a net source of 29.69 and 23.62 mg?CO2?m?2 day?1, respectively, whereas the outer station behaved as a net sink of ?33.37 mg?CO2 m?2 day?1. The study of primary production and community respiration further supports the heterotrophic nature of the estuary in the inner region while the outer periphery was marked by dominant autotrophic character. These contrasting results are in parity with the source characters of many inner estuaries and sinking characters of the outer estuaries situated at the distal continental shelf areas.  相似文献   

15.
A dissolved oxygen (DO) model is calibrated and verified for a highly polluted River Ravi with large flow variations. The model calibration is done under medium flow conditions (431.5 m3/s), whereas the model verification is done using the data collected during low flow conditions (52.6 m3/s). Biokinetic rate coefficients for carbonaceous biochemical oxygen demand (CBOD) and nitrogenous biochemical oxygen demand (NBOD) (i.e, K cr and K n ) are determined through the measured CBOD and ammonia river profiles. The calculated values of K cr and K n are 0.36 day?1 and 0.34 day?1, respectively. The close agreement between the DO model results and the field values shows that the verified model can be used to develop DO management strategies for the River Ravi. The biokinetic coefficients are known to vary with degree of treatment (DOT) and therefore need to be adjusted for a rational water quality management model. The effect of this variation on level of treatment has been evaluated by using the verified model to attain a DO standard of 4 mg/L in the river using the biokinetic rate coefficients as determined during the model calibration and verification process. The required DOT in this case is found to be 96 %, whereas the DOT is 86 % if adjusted biokinetic rate coefficients are used to reflect the effect of wastewater treatment. The cost of wastewater treatment is known to increase exponentially as the removal efficiency increases; therefore, the use of appropriate biokinetic coefficients to manage the water quality in rivers is important.  相似文献   

16.
Textile industry wastes raise a great concern due to their strong coloration and toxicity. The objective of the present work was to characterize the degradation and mineralization of textile effluents by advanced oxidative processes using either TiO2 or TiO2/H2O2 and to monitor the toxicity of the products formed during 6-h irradiation in relation to that of the in natura effluent. The results demonstrated that the TiO2/H2O2 association was more efficient in the mineralization of textile effluents than TiO2, with high mineralized ion concentrations (NH 4 + , NO 3 ? , and SO 4 2? ) and significantly decreased organic matter ratios (represented by the chemical oxygen demand and total organic carbon). The toxicity of the degradation products after 4-h irradiation to Artemia salina L. was not significant (below 10 %). However, the TiO2/H2O2 association produced more toxicity under irradiation than the TiO2 system, which was attributed to the increased presence of oxidants in the first group. Comparatively, the photogenerated products of both TiO2 and the TiO2/H2O2 association were less toxic than the in natura effluent.  相似文献   

17.
The major objective of this investigation was to evaluate the potential of scented geraniums, Pelargonium roseum, to uptake and accumulate heavy metals nickel (Ni), cadmium (Cd), or lead (Pb). For this, plants were grown in an artificial soil system and exposed to a range of metal concentrations over a 14-day treatment period. Then, metals from the entire biomass were extracted. The results showed that scented geranium plants accumulated in excess of 20,055 mg of Ni kg?1 dry weight (DW) of root and 10,889 mg of Ni kg?1 DW of shoot, and in excess of 86,566 mg of Pb kg?1 DW for roots and 4,416 mg of Pb kg?1 DW for shoots within 14 days. Also, the uptake and accumulation of cadmium in roots of scented geranium plants increased with the exposure at low (250, 500 mg?L?1) and medium level (750 mg?L?1) followed by a decline at the highest level (1,000 mg?L?1). The highest accumulation in roots (31,267 mg?kg?1 DW) was observed in 750 mg?L?1 cadmium treatment. In the shoots of scented geraniums, the highest amount of metal accumulation (1,957 mg?kg?1 DW) was detected at 750 and 1,000 mg?L?1 of cadmium in the culture solution. Finally, since the high concentrations of Ni or Pb accumulated in shoots of scented geranium has far exceeded 0.1 % DW and for Cd has far exceeded 0.01 % DW, P. roseum is a new hyperaccumulator species for these metals and can be used in phytoremediation industry.  相似文献   

18.
In order to identify the viable option of tillage practices in rice–maize–cowpea cropping system that could cut down soil carbon dioxide (CO2) emission, sustain grain yield, and maintain better soil quality in tropical low land rice ecology soil respiration in terms of CO2 emission, labile carbon (C) pools, water-stable aggregate C fractions, and enzymatic activities were investigated in a sandy clay loam soil. Soil respiration is the major pathway of gaseous C efflux from terrestrial systems and acts as an important index of ecosystem functioning. The CO2–C emissions were quantified in between plants and rows throughout the year in rice–maize–cowpea cropping sequence both under conventional tillage (CT) and minimum tillage (MT) practices along with soil moisture and temperature. The CO2–C emissions, as a whole, were 24 % higher in between plants than in rows, and were in the range of 23.4–78.1, 37.1–128.1, and 28.6–101.2 mg m?2 h?1 under CT and 10.7–60.3, 17.3–99.1, and 17.2–79.1 mg m?2 h?1 under MT in rice, maize, and cowpea, respectively. The CO2–C emission was found highest under maize (44 %) followed by rice (33 %) and cowpea (23 %) irrespective of CT and MT practices. In CT system, the CO2–C emission increased significantly by 37.1 % with respect to MT on cumulative annual basis including fallow. The CO2–C emission per unit yield was at par in rice and cowpea signifying the beneficial effect of MT in maintaining soil quality and reduction of CO2 emission. The microbial biomass C (MBC), readily mineralizable C (RMC), water-soluble C (WSC), and permanganate-oxidizable C (PMOC) were 19.4, 20.4, 39.5, and 15.1 % higher under MT than CT. The C contents in soil aggregate fraction were significantly higher in MT than CT. Soil enzymatic activities like, dehydrogenase, fluorescein diacetate, and β-glucosidase were significantly higher by 13.8, 15.4, and 27.4 % under MT compared to CT. The soil labile C pools, enzymatic activities, and heterotrophic microbial populations were in the order of maize?>?cowpea?>?rice, irrespective of the tillage treatments. Environmental sustainability point of view, minimum tillage practices in rice–maize–cowpea cropping system in tropical low land soil could be adopted to minimize CO2–C emission, sustain yield, and maintain soil health.  相似文献   

19.
Concentrations of 16 priority polycyclic aromatic hydrocarbons (PAHs) were measured in 28 surface soils samples collected from Urumqi, northwest China, for examination of distributions, source contributions, and potential health effects. The results indicated that the sum of 16 PAHs concentration ranged from 331 to 15,799 μg?kg?1 (dw) in soils, with a mean of 5,018?±?4,896 μg?kg?1 (n?=?28). The sum of seven carPAHs concentration ranged from 4 to 1,879 μg?kg?1 (dw; n?=?28). The highest ∑PAHs concentrations were found at roadsides and industrial sites, followed by those at parks, rural areas, and business/residential areas. Coal combustion, emission of diesel and gasoline from vehicles, and petroleum source were four sources of PAHs as determined by PMF analysis, which contributed 51.19, 19.02, 18.35, and 11.42 % to the PAH sources, respectively. Excellent coefficients of correlation between the measured and predicted PAHs concentrations suggested that the PMF model was very effective to estimate sources of PAHs in soils. Incremental lifetime cancer risk values at the 95th percentile due to human exposure to surface soils PAHs in Urumqi were 2.02?×?10?6 for children and 2.72?×?10?5 for adults. The results suggested that the current PAHs levels in soils from Urumqi were pervasive and moderately carcinogenic to children and adults.  相似文献   

20.
The determination of mercury in crude oil and petroleum products is particularly difficult due to the volatile nature of both mercury and the matrix, which may lead to significant loss of the analyte. A simple extraction method for total mercury has been developed to determine total mercury in crude oil using cold vapor atomic fluorescence spectrometry. The homogenized crude oil sample was diluted to 5, 10, and 20 % (w/w) in toluene. The diluted crude oil samples were spiked with 10 and 40 μg/kg (w/w). The samples were extracted using an oxidant/acid solution, BrCl/HCl. The mercury was extracted into the aqueous phase; the ionic mercury was then reduced to volatile elemental mercury (Hg0) by stannous chloride (SnCl2). The mercury vapor was detected by Merlin cold vapor atomic fluorescence spectrometry at a 253.7-nm wavelength. The average recoveries for mercury in spiked diluted crude oil (10 and 40 μg/kg, w/w) were between 96 and 103 %, respectively, in 5 and 10 % spiked diluted crude oil. Whereas, low recoveries (<50 %) were recorded in 20 % diluted spiked crude oil. The method detection limit was calculated as t (0.01)(n ? 1)?×?SD where t is the student's value for 99 % confidence level and standard deviation estimate with n???1 degrees of freedom. The method detection limit was found to be 0.38 μg/kg based on 5 g of diluted crude oil sample. The method is sensitive enough to determine low levels of mercury in crude oil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号