首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
基于郑州市2005—2015年的OMI遥感反演资料以及地面相关监测数据,研究了郑州市对流层NO_2的时空分布特征,并利用灰色关联法对郑州市NO_2柱浓度变化的主要影响因素进行分析。与地面观测数据对比检验显示,对流层NO_2柱浓度年均值数据与近地面监测站NO_2浓度的实测年均值数据呈显著的正相关,相关系数分别为0.884 6和0.940 2,表明OMI数据资料可以较好地反映地面NO_2浓度的变化。郑州市的对流层NO_2柱浓度在2005—2013年间呈现波动变化且2013—2015年NO_2柱浓度显著减小的特征。季节变化上NO_2柱浓度主要表现为冬季秋季春季夏季的特点。郑州市对流层NO_2柱浓度的空间变化分布主要表现为由北部向南部逐渐递减的趋势,年际变化上高值区与低值区变化不够显著,中值区近年来不断扩大。灰色关联度分析结果显示,汽车保有量与对流层NO_2柱浓度的灰色关联度最低为0.571,而标准煤消耗量、工业用电量以及采暖供热量与对流层NO_2柱浓度的灰色关联度比较高,分别为0.956、0.828、0.862,即大气中工业过程及采暖期煤炭燃烧排放的NO_2占较大比例,汽车尾气排放所占的比例相对较小。  相似文献   

2.
为研究焦作市大气污染特征及其相关性,对2015—2017年焦作市4个国控空气监测点位的监测数据进行统计分析。结果表明:2015—2017年城区环境空气污染SO_2、NO_2、CO、PM_(10)、PM_(2.5)浓度均呈逐年下降趋势;大气污染浓度季节变化特征明显,PM_(10)、PM_(2.5)、SO_2、NO_2、CO的浓度均为冬季最高、夏季最低,空气质量指数也在冬季达到最高值; O_3浓度则为夏季最高、冬季最低。2017年焦作市沙尘天气共计36 d,严重影响了环境空气中颗粒物的浓度。由PM_(2.5)与PM_(10)的比值说明大气颗粒物污染以PM_(2.5)为主。通过SPSS软件分析,SO_2、NO_2、CO、PM_(10)、PM_(2.5)浓度间呈两两正相关,O_3浓度与NO_2、CO呈负相关。  相似文献   

3.
使用2012—2015年无锡市区的6种大气污染物监测数据,对无锡市区各污染物的年度变化、空间分布、影响因素进行了分析。结果表明:(1)2012—2015年无锡市区SO_2、O_3质量浓度呈下降趋势,且趋势显著;NO_2质量浓度呈下降趋势,但不明显;CO、PM_(10)、PM_(2.5)的质量浓度年际变化比较平稳。(2)无锡市区SO_2、NO_2、PM_(10)、PM_(2.5)、CO的空气质量分指数(IAQI)均为冬季最高、夏季最低;O_3的IAQI则为夏季最高、冬季最低。(3)SO_2、NO_2、PM_(10)、PM_(2.5)、CO浓度间呈两两正相关,且相关性极显著;O_3浓度与NO_2、CO呈显著负相关,与SO_2、PM_(10)、PM_(2.5)浓度之间没有明显的关联。(4)分析了无锡市区各项大气污染物浓度的空间分布特征。(5)SO_2、NO_2、PM_(10)浓度周内变化具有"周末效应"的特征,而O_3、CO和PM_(2.5)浓度周内变化出现"反周末效应"。  相似文献   

4.
以2020年1月—2021年9月对流层观测仪(TROPOMI)卫星观测资料反演获取的对流层甲醛(HCHO)、二氧化氮(NO2)柱浓度数据为依据,采用统计方法分析了扬州市HCHO和NO2柱浓度的时空分布特征。结果表明,扬州市对流层HCHO、NO2平均柱浓度分别为903.01×1013, 633.77×1013mole/cm2;受太阳紫外辐射影响,HCHO柱浓度变化特征表现为6月最高、1月最低;受气象条件和人为排放强度影响,NO2则表现为1月最高、8月最低。2021年1—9月扬州市对流层HCHO、NO2柱浓度月均值同比2020年分别增长4.0%,40.6%。空间分布特征显示,扬州市对流层HCHO和NO2浓度高值区主要分布在扬州市南部,且浓度高值区域与重点排污企业分布情况较为一致,多为电力供热、工业锅炉、冶金、石化与化工、表面涂层等行业。相关性分析显示,对流层HCHO与气温、臭氧浓度呈显著正相关,而NO2与气温、臭氧浓度呈显著负相关。  相似文献   

5.
对卫星遥感监测大气NO_2的差分算法涉及的科学问题进行了综述,包括去除大气散射和地表反射噪声影响、大气拉曼散射引起的Ring效应校正、不同大气成分分离和观测垂直归一化等问题。国际上通过剔除平流层NO_2获得对流层柱浓度产品,文章绕开平流层NO_2获取问题,提出了结合大气化学模式模拟的垂直廓线直接估算近地面NO_2浓度技术方法,以更好地满足环境空气质量的观测需求,阐述了几个影响NO_2反演精度的相关问题。  相似文献   

6.
2014年夏季6~8月利用地基多轴差分吸收光谱仪(MAX DOAS)在新疆绿洲城市乌鲁木齐市三道坝镇、库尔勒市西尼尔镇及博乐市84团农田区观测的NO_2垂直柱浓度(VCD)数据,结合同期的气象数据分析了NO_2VCD的变化特征。研究表明:1NO_2气体的日变化规律在乌鲁木齐市和库尔勒市农田区呈波浪式多峰特征,博乐市农田区呈明显的双峰形式,且峰值除了库尔勒市在午后外,乌鲁木齐市和博乐市均出现在早晚时段;2新疆绿洲城市农田区在夏季6月(3.327×1015molec/cm~2)的NO_2VCD最高,其次是7月(2.002×1015molec/cm~2),最低是8月(1.656×1015molec/cm2);3NO_2VCD与气温、水汽压气象要素密切相关;由于城市间地势、格局的差异,库尔勒市的NO_2浓度与风速呈显著正相关,乌鲁木齐市、博乐市的NO_2浓度与风速相关性不显著。  相似文献   

7.
基于Aura卫星臭氧监测仪(OMI)数据,分析了2011—2018年中国东部地区对流层NO2柱浓度的时空分布规律,以广泛而客观地验证NO2减排成效。结果表明:进入"十二五"以来,中国东部地区对流层NO2柱浓度快速下降,高值区域范围快速收缩甚至消失;华北平原、长江中下游平原污染相对严重,同时这些地区污染程度正在得到较快速的缓解;京津冀、长三角、珠三角是中国东部地区对流层NO2柱浓度相对最高、下降速度最快的典型区域;中国东部地区NO2减排取得的成效与产业转型升级、能源结构调整及严控移动源排放等政策措施密不可分。  相似文献   

8.
选取2014—2018年广东省21个城市的空气质量指数(AQI)以及PM_(2.5)、PM_(10)、CO、NO_2、O_3、SO_2的浓度数据,利用重心模型和空间自相关模型,对广东省的空气质量和各污染物的浓度水平进行时空特征分析,同时,利用空间计量分析模型分析社会经济特征变量对环境空气质量空间特征的影响。结果表明:2014—2018年广东省的大气污染重心一直徘徊在广州市和东莞市的交界地带。全省的重心由东北向西南迁移,6种污染物的迁移路径各有特点。6种污染物中,PM_(2.5)、PM_(10)、NO_2、O_3的重心整体向西南方向迁移,CO的污染重心整体向东北方向迁移,而SO_2污染重心整体向南迁移。6种污染的污染重心每年迁移的距离非常微小。广东省春夏的污染重心偏东北方向,分布较松散;秋冬季的污染重心偏向西南方向,分布较集中。2014—2018年,广东省存在大气污染的"热点"和"冷点"区域,呈现出高污染区域聚集和低污染区域聚集的态势。珠江入海口地区、清远市周边的空气质量较差;湛江沿海地区、汕尾地区的空气质量相对较好。2014—2018年,广东省人均地区生产总值(GDP)、第三产业占GDP比重与城市AQI呈现负相关关系,工业产值占GDP比重、人均可支配收入、研究与试验发展(RD)经费支出与城市AQI呈现正相关关系,外商直接投资和大气环境之间的关系不确定。  相似文献   

9.
于2017年3月1日—5月31日监测分析了连云港市大气PM_(2.5)中主要水溶性无机离子质量浓度的日变化规律,以及与气象因子、PM10、PM_(2.5)相关性。结果表明,水溶性无机离子质量浓度与环境空气中NO_2、CO、PM_(10)、PM_(2. 5)显著相关,与气温、风速、能见度等呈负相关;日变化呈明显单峰型,峰值出现在08:00左右;水溶性无机离子季度均值为27. 2μg/m~3,占ρ(PM_(2.5))平均50%左右,ρ(NO_3~-)、ρ(SO_4~(2-))和ρ(NH_4~+)占ρ(水溶性无机离子)总85%以上;指出,SO_4~(2-)主要受远距离传输的影响,NO_3~-和NH_4~+主要受局地源的影响。  相似文献   

10.
为了解蚌埠市环境空气中PM_(2.5)的来源,于2017年8月18日—9月18日,在百货大楼和高新区站点,利用单颗粒物气溶胶飞行时间质谱仪开展PM_(2.5)在线源解析。结果表明,百货大楼点位ρ(PM_(2.5))高于高新区点位,轻度污染比例(4.2%)明显高于高新区点位(0.8%),出现了中度污染(0.3%);SPAMS的PM_(2.5)质谱图显示百货大楼点位PM_(2.5)中K~+、Na~+特征明显,高新区点位HSO_4~-、NO_3~-、NO_2~-等无机信号较为明显;2个点位NO_3~-、NO_2~-、NH_4~+离子颗粒数占总颗粒数的百分比明显较高,且高新区点位NO_3~-、HSO_4~-离子数占比要明显高于百货大楼点位,燃料燃烧、工业工艺源、农田氮肥施用是其主要的人为污染源;2个点位PM_(2.5)成分主要为元素碳,分别占比42.4%,40.6%;污染时段,ρ(PM_(2.5))快速上升,除受本地机动车尾气源和燃煤源累积影响外,百货大楼点位扬尘源排放增加,高新区点位扬尘源和工业工艺排放源增加;2个点位机动车尾气源均为首要污染源,分别占比29.5%和30.9%,其次为燃煤源(24.3%和24.7%),扬尘源占比分别为22.9%和20.8%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号