首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
The Republican River Basin of Colorado,Nebraska, and Kansas lies in a valley which contains PierreShale as part of its geological substrata. Selenium is anindigenous constituent in the shale and is readily leached intosurrounding groundwater. The Basin is heavily irrigated throughthe pumping of groundwater, some of which is selenium-contaminated, onto fields in agricultural production. Water,sediment, benthic invertebrates, and/or fish were collected from46 sites in the Basin and were analyzed for selenium to determinethe potential for food-chain bioaccumulation, dietary toxicity,and reproductive effects of selenium in biota. Resultingselenium concentrations were compared to published guidelines orbiological effects thresholds. Water from 38% of the sites (n = 18) contained selenium concentrations exceeding 5 g L-1, which is reported to be a high hazard for selenium accumulation into the planktonic food chain. An additional 12 sites (26% of the sites) contained selenium in water between 3–5 g L-1, constituting a moderate hazard. Selenium concentrations in sedimentindicated little to no hazard for selenium accumulation fromsediments into the benthic food chain. Ninety-five percent ofbenthic invertebrates collected exhibited selenium concentrationsexceeding 3 g g-1, a level reported as potentially lethal to fish and birds that consume them. Seventy-five percent of fish collected in 1997, 90% in 1998, and 64% in 1999 exceeded 4 g g-1selenium, indicating a high potential for toxicity andreproductive effects. However, examination of weight profilesof various species of collected individual fish suggestedsuccessful recruitment in spite of selenium concentrations thatexceeded published biological effects thresholds for health andreproductive success. This finding suggested that universalapplication of published guidelines for selenium may beinappropriate or at least may need refinement for systems similarto the Republican River Basin. Additional research is needed todetermine the true impact of selenium on fish and wildliferesources in the Basin.  相似文献   

2.
Nine stream sites in the Blackfoot River, Salt River, and Bear River watersheds in southeast Idaho, USA were sampled in May 2001 for water, surficial sediment, aquatic plants, aquatic invertebrates, and fish. Selenium was measured in these aquatic ecosystem components, and a hazard assessment was performed on the data. Water quality characteristics such as pH, hardness, and specific conductance were relatively uniform among the nine sites. Of the aquatic components assessed, water was the least contaminated with selenium because measured concentrations were below the national water quality criterion of 5 g/L at eight of the nine sites. In contrast, selenium was elevated in sediment, aquatic plants, aquatic invertebrates, and fish from several sites, suggesting deposition in sediments and food web cycling through plants and invertebrates. Selenium was elevated to concentrations of concern in fish at eight sites (> 4 g/g in whole body). A hazard assessment of selenium in the aquatic environment suggested a moderate hazard at upper Angus Creek (UAC) and Smoky Creek (SC), and high hazard at Little Blackfoot River (LiB), Blackfoot River gaging station (BGS), State Land Creek (SLC), upper (UGC) and lower Georgetown Creek (LGC), Deer Creek (DC), and Crow Creek (CC). The results of this study indicate that selenium concentrations from the phosphate mining area of southeast Idaho were sufficiently elevated in several ecosystem components to cause adverse effects to aquatic resources in southeastern Idaho.  相似文献   

3.
This study highlights the implications of selenium (Se) dispersion in groundwater flow regimes of Kahota Industrial Triangle area located adjacent to the Soan River, Islamabad. Initially, a regional groundwater 3-D flow model has been developed, calibrated to the known observed heads of 24 water wells, verified, and confirmed that convergence has actually arrived to satisfy the steady state condition. Later, the transient simulation was carried out adding in the known recharge, storage factor, porosity, and observed drawdown matched with the simulated drawdown that appears to fall in close agreement with a difference of 0.25 m. As such the steady state groundwater model has facilitated to understand the mechanism of groundwater flow regimes in reference to the implications of selenium dispersion from disposal of Kahota Industrial Triangle area. Thirty-five water samples were collected mainly from the industrial water wells for the evaluation of heavy metals. Selenium being the major contributor of pollution has been short listed to monitor its dispersion using a solute transport model modular three-dimensional transport model (MT3D). Chemical parameters related to selenium characteristics including horizontal and vertical transverse dispersivity/longitudinal dispersivity, effective molecular diffusion coefficient and bulk density of the porous medium of aquifers have been used in MT3D contaminant transport model. MT3D is run for 30 years in steady state condition. As usual first run did not produce the exact field conditions. Therefore, the contaminant transport model is calibrated against the 32 values of observed selenium concentrations in boreholes by minor adjustments in the chemical parameter values. The final calibration has been achieved with residual value of 3.88 × 10???5 Kg/m3. Seven hypothetical observation wells are used to monitor the selenium concentrations over a long-term period of time.  相似文献   

4.
There is concern that elevated levels of selenium found in the source water of a newly formed wetland park in Las Vegas, Nevada, may have detrimental effects on local wildlife. In this study, we collected and analyzed water samples monthly for a three year period from the inflow and outflow of the system. We also gathered dominant aquatic plants and selected terrestrial plants and analyzed the water and plant tissues (root, shoot, leaf and flower) for selenium by high resolution Inductively Coupled Plasma Mass Spectrometer. Except for storm events and the introduction of an alternative low selenium content source water during summer low-flow conditions, selenium in the water was relatively stable. The concentration in the outflow tended to be slightly lower than the inflow. Concentrations of selenium in the dominant plant taxa in this wetlands were typical of ecosystems in the western United States and varied by taxa, tissue type, localized conditions (e.g., contact with selenium-laden water), and to a lesser extent, seasons. Selenium in the aquatic plant spiny naiad (Najas marina) was relatively high and may pose an ecological risk to wildlife during the late spring and summer. Additional work is underway investigating aquatic food chain accumulations of selenium as well as mass balance of selenium in the system.  相似文献   

5.
Metal levels in fish have been extensively studied, but little data currently exists for the Middle East. We examined the levels of metals and metalloids (aluminum, arsenic, copper, manganese, selenium, zinc, and mercury) in the flesh of 13 fish species collected from three fishing sites and a local fish market in Jeddah, Saudi Arabia. We tested the following null hypotheses: (1) there are no interspecific differences in metal levels, (2) there are no differences in metal levels in fishes between market and fishing sites, (3) there are no size-related differences in metal levels, and (4) there are no differences in selenium:mercury molar ratio among different fish species. There were significant interspecific differences in concentrations for all metals. There was an order of magnitude difference in the levels of aluminum, arsenic, mercury, manganese, and selenium, indicating wide variation in potential effects on the fish themselves and on their predators. Fishes from Area II, close to a large commercial port, had the highest levels of arsenic, mercury, and selenium, followed by market fishes. Mercury was positively correlated with body size in 6 of the 13 fish species examined. Mercury was correlated positively with arsenic and selenium, but negatively with aluminum, cobalt, copper, manganese, and zinc. Selenium:mercury molar ratios varied significantly among species, with Carangoides bajad, Cephalopholis argus, Variola louti, and Ephinephelus tauvina having ratios below 10:1. These findings can be used in risk assessments, design of mercury reduction plans, development of fish advisories to protect public health, and future management decision-making.  相似文献   

6.
Hydrogeologically, the Central Coal Basin (Asturias, Spain) is characterized by predominantly low-permeability materials that make up a multilayer aquifer with very low porosity and permeability values, where the sandstones act as limited aquifers, and wackes, mudstones, shales and coal seams act as confining levels. Preferential groundwater flow paths are open fractures and zones of decompression associated with them, so the hydraulic behaviour of the system is more associated with fracturing than lithology. Thus, abandoned and flooded mines in the area acquire an important role in the management of water resources, setting up an artificial "pseudo-karst" aquifer. This paper evaluates the potential application of the abandoned mines as underground reservoirs, both for water supply and energetic use, mainly through heat pumps and small hydropower plants. In particular, the groundwater reservoir shaped by the connected shafts Barredo and Figaredo has been chosen, and a detailed and multifaceted study has been undertaken in the area. The exposed applications fit with an integrated management of water resources and contribute to improve economic and social conditions of a traditional mining area in gradual decline due to the cessation of such activity.  相似文献   

7.
The Lower Ponnaiyar River Basin forms an important groundwater province in South India constituted by Tertiary formations dominated by sandstones and overlain by alluvium. The region enjoyed artesian conditions 50 years back but at present frequent failure of monsoon and over exploitation is threatening the aquifer. Further, extensive agricultural and industrial activities and urbanization has resulted in the increase in demand and contamination of the aquifer. To identify the sources and quality of groundwater, water samples from 47 bore wells were collected in an area of 154 km2 and were analysed for major ions and trace metals. The results reveal that the groundwater in many places is contaminated by higher concentrations of NO3, Cl, PO4 and Fe. Four major hydrochemical facies Ca–Mg–Cl, Na–Cl, Ca–HCO3 and Na–HCO3 were identified using Piper trilinear diagram. Salinity, sodium adsorption ratio, and sodium percentage indicate that most of the groundwater samples are not suitable for irrigation as well as for domestic purposes and far from drinking water standards. The most serious pollution threat to groundwater is from nitrate ions, which are associated with sewage and fertilizers application. The present state of the quality of the lower part of Ponnaiyar River Basin is of great concern and the higher concentration of toxic metals (Fe and Ni) may entail various health hazards.  相似文献   

8.
It is now possible to formulate diagnostic selenium concentrations in four distinct ecosystem-level components; water, food-chain, predatory fish (consuming fish or invertebrate prey), and aquatic birds. Waterborne selenium concentrations of 2 µg/l or greater (parts per billion; total recoverable basis in 0.45 filtered samples) should be considered hazardous to the health and long-term survival of fish and wildlife populations due to the high potential for food-chain bioaccumulation, dietary toxicity, and reproductive effects. In some cases, ultra-trace amounts of dissolved and particulate organic selenium may lead to bioaccumulation and toxicity even when total waterborne concentrations are less than 1 µg/l.Food-chain organisms such as zooplankton, benthic invertebrates, and certain forage fishes can accumulate up to 30 µg/g dry weight selenium (some taxa up to 370 µg/g) with no apparent effect on survival or reproduction. However, the dietary toxicity threshold for fish and wildlife is only 3 µg/g; these food organisms would supply a toxic dose of selenium while being unaffected themselves. Because of this, food-chain organisms containing 3 µg/g (parts per million) dry weight or more should be viewed as potentially lethal to fish and aquatic birds that consume them.Biological effects thresholds (dry weight) for the health and reproductive success of freshwater and anadromous fish are: whole body=4 µg/g; skeletal muscle=8 µg/g; liver=12 µg/g; ovaries and eggs=10 µg/g. Effects thresholds for aquatic birds are: liver=10 µg/g; eggs=3 µg/g. The most precise way to evaluate potential reproductive impacts to adult fish and aquatic bird populations is to measure selenium concentrations in gravid ovaries and eggs. This single measure integrates waterborne and dietary exposure, and allows an evaluation based on the most sensitive biological endpoint. Resource managers and aquatic biologists should obtain measurements of selenium concentrations present in water, food-chain organisms, and fish and wildlife tissues in order to formulate a comprehensive and conclusive assessment of the overall selenium status and health of aquatic ecosystems.  相似文献   

9.
The present study deals with the ground water quality assessment in Kahuta Industrial Triangle Islamabad, Pakistan. The objective of the study was to assess ground water quality against the drinking water standards for various toxic inorganic elements. Representative groundwater samples were collected and analyzed in the Water Quality Laboratory of Pakistan Council of Research in Water Resources (PCRWR) at Islamabad, Pakistan. The samples were run on ICP-MS (Inductively coupled plasma mass spectrometry), which has the capability to separate and quantify 70 elements at a time. One of the finding of study is that ICP-MS is a very good tool to analyze broad range of toxic inorganic elements to the level of parts per billion (ppb). World Health Organization drinking water standards shows that these toxic inorganic elements such as heavy metals even at this concentration level (ppb) are injurious to human health. This analysis indicated pollution of various toxic elements including Selenium. Vertical leachate through industrial waste septic tanks is identified as major cause of groundwater pollution in the Industrial Triangle. Monitoring of the septic tanks and groundwater quality in study area is suggested along with remedial measures.  相似文献   

10.
Elevated levels of selenium have been found in water and aquatic biota downstream from two open-pit coal mines in the Rocky Mountain foothills of Alberta. Birds are particularly sensitive to excessive dietary selenium. However, there is relatively little information on selenium accumulation in birds' eggs on fast-flowing mountain streams. We determined levels of selenium in water samples, caddisfly larvae and eggs of American dippers (Cinclus mexicanus) nesting on the Gregg River, downstream from the mines, and on reference streams in the same general vicinity. Selenium levels (mean, 95% confidence limits) in water samples and caddisflies collected from sites near dipper nests on the Gregg River (water: 4.26, 1.90–9.56 μg L−1; caddisflies: 8.43, 7.51–9.46 μg g dry wt−1) were greater than those collected from sites near nests on reference rivers (water: 0.38, 0.21–0.71 μg L−1; caddisflies: 4.65, 4.35–4.97 μg g dry wt−1). The mean (± 1SE) selenium level in dipper eggs from the Gregg River (6.3 ± 0.2 μg g−1 dry wt) was significantly higher than it was in eggs from reference streams (4.9 ± 0.2 μg g−1 dry wt). Concentrations of selenium in eggs were significantly correlated with those in water samples (r = 0.45). The maximum selenium level in eggs from the Gregg River (9.0 μg g−1) may have been high enough to warrant concern from an ecotoxicological perspective. The American dipper can serve as a useful bioindicator of selenium contamination in mountainous, lotic ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号