首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Karst aquifers are characterized by spatial heterogeneity due to the presence of highly permeable channels and conduits in low-permeable fractured rocks (matrix block). Recent studies have reported a close relationship between surface and subsurface water in karstic regions due to the water flow through a complicated network of paths formed by fracture intersections. Subsurface flow in karstified aquifers ranges between conduit flow, in large passages with relatively high flow velocities, and diffuse flow, in the matrix block where Darcy’s law is still valid. In this paper, we present the simulation of a complex karstified aquifer system in Crete, Greece, where the presence of main faults drastically affects the regional flow. A discrete fracture approach in conjunction with an equivalent porous medium approach was adopted to simulate the mixed flow in the area of interest. The simulation results have shown that the length and the orientation of the dominant faults, primarily during the rainy season, affect the flow field.  相似文献   

2.
Model calculations are used to explore the effects of the kinetics of diffusion of dissolved organic compounds into and out of low-permeability porous materials and of the rate of solution of nonaqueous phase liquid (NAPL) droplets (into the aqueous phase) on the rate of cleanup of contaminated aquifers. Two models are presented: (1) the flushing of organic compounds initially distributed as NAPL droplets in a fracture in a porous rock aquifer, and (2) the removal of organic compounds initially present as NAPL in an aquifer containing low-permeability porous clay lenses. NAPL droplet size is found to be of much less importance than the spacing of the fractures in the porous rock in the first model or the thickness of the clay lenses in the second.  相似文献   

3.
The development of groundwater resources for water supply is a favored way in Turkey. The Berdan alluvial aquifer in Mersin is particularly productive, but little is known about the natural phenomena that govern the groundwater quality and the contamination sources in this region. During 2001 and 2002, water samples for chemical analysis were obtained from 27 wells and from two points of Berdan River and analyzed by ICP. Main chemical characteristics of sampled groundwater define two aquifers, which were also determined by hydrogeological investigations. The groundwater produced from some of the wells was affected by anthropogenic activities temporally and spatially by seawater intrusion. Berdan River is polluted with the wastewater discharges and river water also influences the groundwater quality.  相似文献   

4.
Acid mine drainage and metal loads from hardrock mines to surface waters is a significant problem in the western USA and many parts of the world. Mines often occur in mountain environments with fractured bedrock aquifers that serve as pathways for metals transport to streams. This study evaluates impacts from current and potential future groundwater metal (Cd, Cu, and Zn) loads from fractures underlying the Gilt Edge Mine, South Dakota, on concentrations in Strawberry Creek using existing flow and water quality data and simple mixing/dilution mass balance models. Results showed that metal loads from bedrock fractures to the creek currently contribute <1% of total loads. Even if background water quality is achieved upstream in Strawberry Creek, fracture metal loads would be <5%. Fracture loads could increase substantially and cause stream water quality standards exceedances once groundwater with elevated metals concentrations in the aquifer matrix migrates to the fractures and discharges to the stream. Potential future metal loads from an upstream fracture would contribute a small proportion of the total load relative to current loads in the stream. Cd has the highest stream concentrations relative to standards. Even if all stream water was treated to remove 90% of the Cd, the standard would still not be achieved. At a fracture farther downstream, the Cd standard can only be met if the upstream water is treated achieving a 90% reduction in Cd concentrations and the median stream flow is maintained.  相似文献   

5.
Gadilam river basin has gained its importance due to the presence of Neyveli Lignite open cast mines and other industrial complexes. It is also due to extensive depressurization of Cuddalore aquifer, and bore wells for New Veeranam Scheme are constructed downstream of the basin. Geochemical indicators of groundwater were used to identify the chemical processes that control hydrogeochemistry. Chemical parameters of groundwater such as pH, electrical conductivity, total dissolved solids, sodium (Na?+?), potassium (K?+?), calcium (Ca?+?), magnesium (Mg?+?), bicarbonate $({\rm HCO}_{3}^{-})$ , sulfate $({\rm SO}_{4}^{-})$ , phosphate $({\rm PO}_{4}^{-})$ , and silica (H4SiO4) were determined. Interpretation of hydrogeochemical data suggests that leaching of ions followed by weathering and anthropogenic impact controls the chemistry of the groundwater. Isotopic study reveals that recharge from meteoric source in sedimentary terrain and rock–water interaction with significant evaporation prevails in hard rock region.  相似文献   

6.
Monitoring and assessment of the coastal aquifers are becoming a worldwide concern for the need of additional and sustainable water resources to satisfy demographic growth and economic development. A hydrochemical and geoelectrical investigation was conducted in the El-Omayed area in the northwestern coast of Egypt. The aim of the study was to delineate different water-bearing formations, provide a general evaluation of groundwater quality, and identify the recharge sources in aquifers. Thirty-seven water samples were collected and chemically analyzed from the sand dune accumulations and oolitic limestone aquifers. Fifteen profiles of vertical electrical soundings (VESs) were obtained in the oolitic limestone aquifer to examine the variations of subsurface geology and associated groundwater chemistry. The groundwater reserves in the El-Omayed area are mainly contained in sand dune accumulations and oolitic limestone aquifers. The aquifer of sand dune accumulations contains freshwater of low salinity (average total dissolved solids (TDS)?=?974 mg/l). Groundwater of oolitic limestone aquifer is slightly brackish (average TDS?=?1,486 mg/l). Groundwater of these aquifers can be used for irrigation under special management for salinity control, and regular leaching as indicated by electrical conductivity and sodium adsorption ratio. Results of VES interpretation classified the subsurface sequence of oolitic limestone aquifer into four geoelectric zones, with increasing depth, calcareous loam, gypsum, oolitic limestone, and sandy limestone. Oolitic limestone constitutes the main aquifer and has a thickness of 12–32 m.  相似文献   

7.
McMurdo Station is the largest research station in Antarctica, with a population that ranges each year from 250 to 1200 people. Because of its size and 40-year history of use, a number of locations around the station have become contaminated with wastes. Soils and sediments in these areas have been shown to contain elevated levels of petroleum-related products, PCBs, other organics, and metals. While some remedial investigations have been conducted, background levels of metals in soils have not been determined. This paper reports on background levels of metals in a natural basalt-derived soil (gray soil) and scoria (soft porous rock used as fill, red soil) near McMurdo Station using two fundamentally different analytical procedures, concentrated acid extraction/analysis and total metals. These data facilitate determining the extent and levels of metal contamination near McMurdo Station and provide reference levels of metals for comparison with existing and future remediation data. There were statistically significant differences between metals concentrations in both gray and red soils, and no correlations between the level of extracted versus total metal. Generally, only a small fraction of a metal was extractable.  相似文献   

8.
In semi-arid areas like the Kairouan region, salinization has become an increasing concern because of the constant irrigation with saline water and over use of groundwater resources, soils, and aquifers. In this study, a methodology has been developed to evaluate groundwater contamination risk based on the unsaturated zone hydraulic properties. Two soil profiles with different ranges of salinity, one located in the north of the plain and another one in the south of plain (each 30 m deep) and both characterized by direct recharge of the aquifer, were chosen. Simulations were conducted with Hydrus-1D code using measured precipitation data for the period 1998–2003 and calculated evapotranspiration for both chosen profiles. Four combinations of initial conditions of water content and salt concentration were used for the simulation process in order to find the best match between simulated and measured values. The success of the calibration of Hydrus-1D allowed the investigation of some scenarios in order to assess the contamination risk under different natural conditions. The aquifer risk contamination is related to the natural conditions where it increased while facing climate change and temperature increase and decreased in the presence of a clay layer. Hydrus-1D was a useful tool to predict the groundwater level and quality in the case of a direct recharge and in the absence of any information related to the soil layers except for the texture.  相似文献   

9.
As many arid and semi-arid regions in the Mediterranean Basin, the Grombalia coastal aquifer (NE Tunisia) is affected by severe groundwater exploitation and contamination. Therefore, quality assessments are becoming increasingly important as the long-term protection of water resources is at stake. Multidisciplinary investigations, like the one presented in this paper, are particularly effective in identifying the different origins of mineralization within an aquifer and investigating the impact of anthropogenic activities on groundwater quality. An integrated assessment, focused on the combined use of geostatistical, geochemical and isotopic (δ18O, δ2H and 3H) tools, was performed in the Grombalia aquifer between February and March 2014. The overall goal was to study the main processes controlling aquifer salinization, with special focus to nitrate contamination. Results indicate a persisting deterioration of water quality over the whole basin except the south-eastern zone juxtaposing the recharge area of the aquifer. Nitrate contents exceed the drinking water standard (50 mg/l) in 70% of groundwater samples, mainly due to the excessive use of fertilizers and urban activities. Stable isotope measurements showed the contribution of modern rainwater to aquifer recharge and proved the presence of evaporation contributing to the salinity increase. Tritium values of groundwater samples suggested two hypotheses: the existence of mixture between old and recent water or/and the existence of two recharge periods of the aquifer, pre- and post-nuclear weapons test. Principal component analysis confirmed the geochemical interpretation, highlighting that water-rock interaction evaporation effect and intensive anthropogenic activities constitute the main processes controlling the regional groundwater mineralization.  相似文献   

10.
Assessment of groundwater quality plays a significant role in the utilization of the scarce water resources globally and especially in arid regions. The increasing abstraction together with man-made contamination and seawater intrusion have strongly affected groundwater quality in the Arabia Peninsula, exemplified by the investigation given here from the United Arab Emirates, where the groundwater is seldom reviewed and assessed. In the aim of assessing current groundwater quality, we here present a comparison of chemical data linked to aquifers types. The results reveal that most of the investigated groundwater is not suitable for drinking, household, and agricultural purposes following the WHO permissible limits. Aquifer composition and climate have vital control on the water quality, with the carbonate aquifers contain the least potable water compared to the ophiolites and Quaternary clastics. Seawater intrusion along coastal regions has deteriorated the water quality and the phenomenon may become more intensive with future warming climate and rising sea level.  相似文献   

11.
Evaluation of groundwater quality represents significant input for the development and utilization of water resources. Increasing exploitation of groundwater and man-made pollution has seriously affected the groundwater quality of the North China Plain, such as in the Xuzhou region which is the target of this investigation. The assessment of the groundwater quality and sources in the region was based on analyses of water chemistry and 222Rn activity in samples collected from wells penetrating unconfined and confined aquifers. The results indicate that most of the untreated groundwater in the region is not suitable for the long-term drinking based on permissible limits of the Chinese Environmental Agency and the World Health Organization. However, the groundwater can be used as healthy source of drinking water when they can pass the biological test and softening water treatment. Most of the groundwater is suitable for irrigation. Excessive amounts of SO42? and NO3? are attributed to mainly influence of wastewater, irrigation, and dissolution of sulfate minerals in local coal strata. The major source of the groundwater is meteoric recharge with addition from irrigation and wastewater discharges. Variability of the water quality seems to be also reflecting the type of aquifers where the highest concentration of HCO3? occurs in water of the carbonate fractured aquifer, while the highest Cl? concentration in the unconfined aquifer. Source of 222Rn activity is mainly related to the rock-water interaction with possible addition from the agricultural fertilizers. Protection of groundwater is vital to maintain sustainable drinking quality through reducing infiltration of irrigation water and wastewater.  相似文献   

12.
Rock, sediment and water samples from areas characterised by hydrothermal alterations in the Sabatini and Vico Volcanic Districts, near Rome and the large city of Viterbo, respectively, were collected and analysed to determine the total fluorine (F) content and to understand the F geochemical background level in the volcanic districts of central Italy. Leaching and alteration processes controlling the high concentration of F in water were also investigated. Fluorine concentrations were directly determined (potentiometrically) by an F selective electrode in water samples, while the procedure for rock samples included preliminary F dissolution through alkaline fusion. F concentrations higher than 800 mg kg(-1) were commonly found in the analysed rocks and sediments; the concentration depended on the lithology and on the distance from the alteration areas. A specific successive sampling campaign was conducted in three areas where the F content in sediments was particularly high; in the same areas, measurements of CO(2) flux were also performed to investigate the possible deep origin of F. To verify the relationships among the high F contents in rocks and sediments, the leaching processes involved and the presence of F in the aquifer, we also collected water samples in the western sector of the Sabatini Volcanic District, where hydrothermal manifestations and mineral springs are common. The data were processed using a GIS system in which the F distribution was combined with morphological and geological observations. The main results of our study are that (1) F concentrations are higher in volcanic and recently formed travertine (especially in hydrothermally altered sediments) than in sedimentary rocks and decrease with distance from hydrothermal alteration areas, (2) F is more easily leached from hydrothermally altered rocks and from travertine and (3) sediments enriched with F may indicate the presence of deep regional fractures that represent direct pathways of hydrothermal fluids from the crust to the surface.  相似文献   

13.
The present work attempts statistical analysis of groundwater quality near a Landfill site in Nagpur, India. The objective of the present work is to figure out the impact of different factors on the quality of groundwater in the study area. Statistical analysis of the data has been attempted by applying Factor Analysis concept. The analysis brings out the effect of five different factors governing the groundwater quality in the study area. Based on the contribution of the different parameters present in the extracted factors, the latter are linked to the geological setting, the leaching from the host rock, leachate of heavy metals from the landfill as well as the bacterial contamination from landfill site and other anthropogenic activities. The analysis brings out the vulnerability of the unconfined aquifer to contamination.  相似文献   

14.
The groundwater of Nalgonda district is well known for its very high fluoride content for the past five decades. Many researchers have contributed their scientific knowledge to unravel causes for fluoride enrichment of groundwater. In the present paper, an attempt has been made to relate the high fluoride content in the groundwater to hydrogeochemical characterization of the water in a fracture hard rock terrain—the Wailpally watershed. Groundwater samples collected from all the major geomorphic units in pre- and post-monsoon seasons were analyzed for its major ion constituents such as Ca2?+?, Mg2?+?, Na?+?, K?+?, CO $_{3}^{-}$ , HCO $_{3}^{-}$ , Cl???, SO $_{4}^{-2}$ , NO $_{3}^{-}$ , and F???. The groundwaters in the watershed have the average fluoride content of 2.79 mg/l in pre-monsoon and 2.83 mg/l in post-monsoon. Fluoride concentration in groundwater does not show perceptible change neither with time nor in space. The ionic dominance pattern is in the order of Na?+? > Ca2?+??> Mg2?+??> K??? among cations and HCO $_{3}^{-}\:\,>$ Cl????> SO $_{4}^{-2} >$ NO $_{3}^{-} >$ F??? among anions in pre-monsoon. In post-monsoon, Mg replaces Ca2?+? and NO $_{3}^{-}$ takes the place of SO $_{4}^{-2}$ . The Modified Piper diagram reflect that the water belong to Ca?+?2–Mg?+?2–HCO $_{3}^{-}$ to Na?+?–HCO $_{3}^{-}$ facies. Negative chloralkali indices in both the seasons prove that ion exchange between Na?+? and K?+? in aquatic solution took place with Ca?+?2 and Mg?+?2 of host rock. The interpretation of plots for different major ions and molar ratios suggest that weathering of silicate rocks and water–rock interaction is responsible for major ion chemistry of groundwater in Wailpally watershed. Chemical characteristics and evolution of this fluoride-contaminated groundwater is akin to normal waters of other hard rock terrain; hence, it can be concluded that aquifer material play an important role in the contribution of fluoride in to the accompanying water. High fluoride content in groundwater can be attributed to the continuous water–rock interaction during the process of percolation with fluorite-bearing country rocks under arid, low precipitation, and high evapotranspiration conditions.  相似文献   

15.
以城市副中心北运河西岸湿地(甘棠大桥段)作为典型面状海绵体,利用2018年5月—9月采集的300组地表水和地下水监测数据,分析典型海绵体地下水水化学特征及形成机制,探讨不同含水层之间水力联系,并以Cl-为指示因子,结合其他水化学指标研究分析典型面状海绵体建设背景下地下水与地表水之间的交互作用及影响程度。结果显示,在垂向上,10 m、20 m含水层地下水之间联系密切,且受大气降水影响明显;在平面上,地表水对10 m、20 m含水层组地下水的影响距离为90 m~120 m,地表水对30 m含水层组地下水的影响距离为80 m~90 m。  相似文献   

16.
Natural hazards cause great damage to humankind and the surrounding ecosystem. They can cast certain indelible changes on the natural system. One such tsunami event occurred on 26 December 2004 and caused serious damage to the environment, including deterioration of groundwater quality. This study addresses the groundwater quality variation before and after the tsunami from Pumpuhar to Portnova in Tamil Nadu coast using geochemical methods. As a part of a separate Ph.D. study on the salinity of groundwater from Pondicherry to Velankanni, water quality of this region was studied with the collection of samples during November 2004, which indicated that shallow aquifers were not contaminated by sea water in certain locations. These locations were targeted for post-tsunami sample collection during the months of January, March and August 2005 from shallow aquifers. Significant physical mixing (confirmed with mixing models) within the aquifer occurred during January 2005, followed by precipitation of salts in March and complete leaching and dissolution of these salts in the post-monsoon season of August. As a result, maximum impact of tsunami water was observed in August after the onset of monsoon. Tsunami water inundated inland water bodies and topographic lows where it remained stagnant, especially in the near-shore regions. Maximum tsunami inundation occurred along the fluvial distributary channels, and it was accelerated by topography to a certain extent where the southern part of the study area has a gentler bathymetry than the north.  相似文献   

17.
This study explores the associations of pesticide occurrence in groundwater to geological characteristics of the monitoring points (MPs) contributing area. Pesticide analyses were undertaken during a 2-year groundwater monitoring campaign which generated 845 samples. MCPA and mecoprop were the most frequently detected pesticides in groundwater. Each MP (n?=?158) had a specifically delineated zone of contribution (ZOC) and the dominant physical characteristics present from nine national datasets were recorded for each ZOC. Associations between detections in groundwater and the dominant physical characteristic in each MPs ZOC tested were then statistically analyzed using Fisher’s exact test, logistic regression, and multiple logistic regression. The original physical characteristic datasets used that were associated with detections in groundwater were the type of MP, aquifer type, and Quaternary deposit type. Logistic regression revealed that springs, regionally important aquifer types, aquifers with a karstic flow regime, and alkaline Quaternary deposits in existence above karst aquifers in a MP’s ZOC were more likely to have a pesticide detection in groundwater. Multiple regression from this exploratory work showed some mutual dependency between soil association, aquifer type, and the Geological Survey of Ireland groundwater vulnerability map. The combination of national monitoring data and physical attribute datasets can be used to explore key areas where groundwater is more vulnerable to pesticide contamination.  相似文献   

18.
We discuss here the partial differential equations governing the migration of a decomposing pollutant adsorbing according to a Langmuir isotherm and undergoing 2-dimensional flow in a saturated aquifer. The equation governing the mass transfer of the pollutant to the surfaces within the aquifer are solved in closed form, permitting the use of larger values of the time increment t in the numerical integration of the dispersion-advection equation governing the behavior of the dissolved pollutant. In this numerical integration transverse numerical dispersion is eliminated by using conformal coordinates (velocity potential and stream function), and longitudinal numerical dispersion is very substantially reduced by use of an asymmetrical 4-point formula to represent the advection term. Some representative results are given as contour maps. The mass transfer rate coefficient is estimated as the least positive eigenvalue of a diffusion problem.  相似文献   

19.
In recent years, the unregulated increase of the population in coastal areas of developing countries has become source of concern for both water supply and quality control. In the region of Dakar (Senegal), approximately 80% of water resources come from groundwater reservoirs, which are increasingly affected by anthropogenic pressures. The identification of the main sources of pollution, and thus the aquifer vulnerability, is essential to provide a sound basis for the implementation of long-term geochemically based water management plans in this sub-Saharan area. With this aim, a hydrochemical and isotopic survey on 26 wells was performed in the so-called Peninsula of Cap-Vert. Results show that seawater intrusion represents the main process affecting groundwater chemical characteristics. Nitrates often exceed the World Health Organization drinking water limits: stable isotopes of dissolved nitrate ( $\updelta ^{15}$ N and $\updelta ^{18}$ O) indicate urban sewage and fertilizers as a major source of contamination. Results depict a complex situation in which groundwater is affected by direct and indirect infiltration of effluents, mixing with seawater and freshening processes from below. Besides the relevance of the investigation at a regional level, it represents a basis for decision-making processes in an integrated water resources management and in the planning of similar monitoring strategies for other urban coastal regions.  相似文献   

20.
Organochlorinated Compounds in Waters of the Pearl River Delta Region   总被引:4,自引:0,他引:4  
Samples of river water and sewage water were analysed for ten PCB congeners, chlorobenzenes and chlorinated pesticides (BHCs and DDT) in three cities (Guangzhou, Shenzhen and Zhaoqing) in the Pearl River Delta, The results showed that the sewage water in Shengzhen had the highest concentration of total PCBs at about 10ng/L, and Dasha River (Shengzhen), the lowest at about 1.0ng/L. In general, the sewage waters in the three cities had higher concentrations of PCBs than river waters. Chlorobenzenes were investigated in the water samples. The total concentrations of chlorobenzenes ranged from 0.02~0.13g/L, the Dasha River had the highest level of chlorobenzenes, and the sewage water in the city of Zhaoqing had the next highest. The result may be related to the discharges from paper production factories nearby the sampling sections of the Dasha River (Shenzhen) and sewage water in Zhaoqing. The concentrations of organochlorinated pesticides (-BHC, -BHC, -BHC, DDT and DDE) changed little in all water samples except for the sewage water in Guangzhou. It seemed that these pesticides are more a residual signal than a direct discharge from point sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号