首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peat cores from three bogs in southern Ontario provide a complete, quantitative record of net rates of atmospheric Hg accumulation since pre-industrial times. For comparison with modern values, a peat core extending back 8000 years was used to quantify the natural variations in Hg fluxes for this region, and their dependence on climatic change and land use history. The net mercury accumulation rates were separated into "natural" and "excess" components by comparing the Hg/Br ratios of modern samples with the long-term, pre-anthropogenic average Hg/Br. The average background mercury accumulation rate during the pre-anthropogenic period (from 5700 years BC to 1470 AD) was 1.4 +/- 1.0 microg m(-2) per year (n = 197). The beginning of Hg contamination from anthropogenic sources dates from AD 1475 at the Luther Bog, corresponding to biomass burning for agricultural activities by Native North Americans. During the late 17th and 18th centuries, deposition of anthropogenic Hg was at least equal to that of Hg from natural sources. Anthropogenic inputs of Hg to the bogs have dominated continuously since the beginning of the 19th century. The maximum Hg accumulation rates decrease in the order Sifton Bog, in the City of London, Ontario (141 microg Hg m(-2) per year), Luther Bog in an agricultural region (89 microg Hg m(-2) per year), and Spruce Bog which is in a comparatively remote, forested region (54 microg Hg m(-2) per year). Accurate age dating of recent peat samples using the bomb pulse curve of 14C shows that the maximum rate of atmospheric Hg accumulation occurred during AD 1956 and 1959 at all sites. In these (modern) samples, the Hg concentration profiles resemble those of Pb, an element which is known to be immobile in peat bogs. The correlation between these two metals, together with sulfur, suggests that the predominant anthropogenic source of Hg (and Pb) was coal burning. While Hg accumulation rates have gone into strong decline since the late 1950's, Hg deposition rates today still exceed the average natural background values by 7 to 13 times.  相似文献   

2.
A peat core from Lindow bog near Manchester, England, was precisely cut into 2 cm slices to provide a high-resolution reconstruction of atmospheric Pb deposition. Radiocarbon and (210)Pb age dates show that the peat core represents the period ca. 2000 BC to AD 1800. Eleven radiocarbon age dates of bulk peat samples reveal a linear age-depth relationship with an average temporal resolution of 18.5 years per cm, or 37 years per sample. Using the Pb/Ti ratio to calculate the rates of anthropogenic, atmospheric Pb deposition, the profile reveals Pb contamination first appearing in peat samples dating from ca. 900 BC which clearly pre-date Roman mining activities. Using TIMS, MC-ICP-MS, and SF-ICP-MS to measure the isotopic composition of Pb, the (208)Pb/(206)Pb and (206)Pb/(207)Pb data indicate that English ores were the predominant sources during the pre-Roman, Roman, and Medieval Periods. The study shows that detailed studies of peat profiles from ombrotrophic bogs, using appropriate preparatory and analytical methods, can provide new insight into the timing, intensity, and predominant sources of atmospheric Pb contamination, even in samples dating from ancient times.  相似文献   

3.
Mercury (Hg) records in natural archives such as peat bogs are often used to evaluate anthropogenic or climatic influences on atmospheric Hg deposition. In this context, there is an ongoing discussion about natural sources or processes of Hg enrichment in natural archives. In the present study we estimated Hg fluxes from rock weathering, direct atmospheric deposition and from indirect atmospheric deposition in the catchment of a pristine minerogenic fen (GC2) located in the Magellanic Moorlands, southernmost Chile. The Hg record in the bog covers 11 174 cal. (14)C years and shows Hg concentrations of up to 570 [micro sign]g kg(-1) with an average of 268 [micro sign]g kg(-1). Hg was found to be enriched in the peat by a factor of 81 if compared to the mean Hg concentrations in the rocks of the catchment (3.2 [micro sign]g kg(-1)). Hg and also Pb, Fe, and As were found to be enriched predominately in goethite layers indicating high retention of these elements in the bog by iron oxyhydrates. It could also be demonstrated that the high peat decomposition rates in minerogenic bogs can increase the Hg concentrations in the minerogenic peat by a factor of approximately 2 at the same atmospheric Hg deposition rate if compared to ombrotrophic sites. This study has shown that Hg in minerogenic peat can be naturally enriched especially through the retention by autochthonous formed goethite and can be a solely internal process which does not require increased external Hg fluxes.  相似文献   

4.
A peat core from an ombrotrophic bog in Switzerland provides the first complete, long-term record (14 500 years) of atmospheric Ag and Tl deposition. The lack of enrichment of Ag and Tl in the basal peat layer shows that mineral dissolution in the underlying sediments has not contributed measurably to the Ag and Tl inventories in the peat column, and that Ag and Tl were supplied exclusively by atmospheric deposition. The temporal and spatial distribution of modern peaks in Ag and Tl concentrations are similar to those of Pb which is known to be immobile in peat profiles. Silver and Tl, therefore, are effectively immobile in the peat bog also, allowing an atmospheric deposition chronology to be reconstructed. Silver concentrations vary by up to 114x and Tl up to 241x. While Holocene climate change and land use history can explain the variation in metal concentrations and enrichment factors (EF) in ancient peats (i.e. pre-dating the Roman Period), anthropogenic sources have to be invoked to explain the very high EF values (up to 123 in the case of Ag and 12 in the case of Tl) in peat samples since the middle of the 19th Century. The "natural background" EF of Tl in ancient peats is remarkably close to unity, indicating a lack of significant enrichment of this element in atmospheric aerosols due to chemical weathering of crustal rocks. Silver, on the other hand, shows a pronounced enrichment from 8030 to 5230 (14)C years BP (12x compared to crustal rocks); this may be due to weathering phenomena or biological processes, both of which are driven by climate. Even compared to the natural enrichment of Ag during the mid-Holocene, however, the enrichments of Ag and Tl in modern peats from the Industrial Period are at least an order of magnitude greater. The Pb/Ag and Tl/Ag ratios show that Pb and Tl are preferentially released, compared to Ag, during smelting of argentiferous Pb ores mined during the Roman and Medieval Periods.  相似文献   

5.
Two cores collected in 2001 and 2004 from Flanders Moss ombrotrophic peat bog in central Scotland were dated (14C, 210Pb) and analysed (ICP-OES, ICP-MS) to derive and compare the historical atmospheric deposition records of Sb and Pb over the past 2500 years. After correction, via Sc, for contributions from soil dust, depositional fluxes of Sb and Pb peaked from ca. 1920-1960 A.D., with >95% of the anthropogenic inventories deposited post-1800 A.D. Over the past two centuries, trends in Sb and Pb deposition have been broadly similar, with fluctuations in the anthropogenic Sb/Pb ratio reflecting temporal variations in the relative input from emission sources such as the mining and smelting of Pb ores (in which Sb is commonly present, as at Leadhills/Wanlockhead in southern Scotland), combustion of coal (for which the Sb/Pb ratio is approximately an order of magnitude greater than in Pb ores) and exhaust emissions (Pb from leaded petrol) and abrasion products from the brake linings (Sb from heat-resistant Sb compounds) of automobiles. The influence of leaded petrol has been most noticeable in recent decades, firstly through the resultant minima in Sb/Pb and 206Pb/207Pb ratios (the latter arising from the use of less radiogenic Australian Pb in alkylPb additives) and then, during its phasing out and the adoption of unleaded petrol, complete by 2000 A.D., the subsequent increase in both Sb/Pb and 206Pb/207Pb ratios. The extent of the 20th century maximum anthropogenic enrichment of Sb and Pb, relative to the natural Sc-normalised levels of the Upper Continental Crust, was similar at approximately 50- to 100-fold. Prior to 1800 A.D., the influence of metallurgical activities on Sb and Pb concentrations in the peat cores during both the Mediaeval and Roman/pre-Roman periods was discernible, small Sb and Pb peaks during the latter appearing attributable, on the basis of Pb isotopic composition, to the mining/smelting of Pb ores indigenous to Britain.  相似文献   

6.
Cores from four Scottish ombrotrophic peat bogs were used to reconstruct the historical record of atmospheric vanadium (V) deposition in Scotland over the last 150 years. The general similarity of V and Pb concentration profile trends in (210)Pb-dated cores from each of the sites strongly suggested that V, like Pb, is essentially immobile in ombrotrophic peat. After allowance via use of the conservative element Ti for the contribution of soil dust V, the deposition of anthropogenic V was found to be greatest (~ 1.3 to 2.0 mg m(-2) y(-1)) in the mid-20(th) century before decreasing to 0.1-0.3 mg m(-2) y(-1) in the early years of the 21(st) century. The latter values were in good agreement with directly measured atmospheric V fluxes at nearby sites, a finding also observed in the case of Pb. The decline in peat-core-derived fluxes for both V and Pb from 1970 to 2004, however, was not as large as the decline in official UK emission estimates for the two metals during this period. This, along with an order of magnitude discrepancy between the anthropogenic V/Pb ratios at the peat core surface and the higher values of the ratio for UK emissions in the early 2000s, suggests that the recently revised UK emissions data for V may perhaps still be overestimated and/or that some previously deposited Pb is being resuspended in the atmosphere.  相似文献   

7.
A core from an ombrotrophic Swiss bog representing 12 370 (14)C years of peat accumulation was evaluated as a possible archive of atmospheric deposition of Mo, Th and U. Calcium, Sr, and Ba were also determined to quantify weathering inputs, Mn to follow possible redox transformations, and Rb to identify plant uptake. Each of these elements was determined using ICP-MS, following digestion in a microwave heated autoclave using 3 ml HNO(3) and 0.1 ml HBF(4). Calcium and Sr clearly identify the thickness of the ombrotrophic zone because they are enriched in the minerogenic zone relative to the concentration of mineral matter. The concentration of Ba, however, is proportional to the concentration of mineral matter in all samples, and is not added to peat column by weathering reactions at the peat-sediment interface. The lowest element concentrations are found during the Holocene climate optimum (5320 to 8030 (14)C year BP) with the following natural background values (n= 18): Mo 0.08 +/- 0.02 microg g(-1), U 0.029 +/- 0.008 microg g(-1), Ba 5.2 +/- 2.6 microg g(-1), Th 0.070 +/- 0.022 microg g(-1) and Rb 0.63 +/- 0.09 microg g(-1). By far the highest concentrations of Ba, Mn, Rb and Th were found during the Younger Dryas cold climate event (10 590 (14)C year BP) when the flux of atmospheric soil dust was at its post-glacial maximum. Molybdenum and U are elevated in concentration throughout the minerogenic zone because of sediment weathering and this masks the atmospheric signal in samples older than ca. 8000 (14)C year BP (ca. 9000 calendar years). Enrichment factors (EF) calculated using Sc as a conservative, lithogenic element shows that minerogenic peats are enriched in Mo up to 18x and U 26x, relative to the natural "background" values. During the two millennia prior to industrialisation, the accumulation rate of atmospheric Mo averaged 0.23 +/- 0.13 microg m(-2) year(-1). With the onset of the Industrial Revolution, Mo accumulation rates rapidly and continuously increased to approximately 10 microg m(-2) year(-1) in the late 1980s. These data suggest that Mo in atmospheric aerosols today is derived predominately from anthropogenic emissions. Uranium does not show the same enrichment pattern which suggests that steel-making rather than coal combustion is the primary source of atmospheric Mo contamination at this site.  相似文献   

8.
Given the increasing interest in using peat bogs as archives of atmospheric metal deposition, the lack of validated sample preparation methods and suitable certified reference materials has hindered not only the quality assurance of the generated analytical data but also the interpretation and comparison of peat core metal profiles from different laboratories in the international community. Reference materials play an important role in the evaluation of the accuracy of analytical results and are essential parts of good laboratory practice. An ombrotrophic peat bog reference material has been developed by 14 laboratories from nine countries in an inter-laboratory comparison between February and October 2002. The material has been characterised for both acid-extractable and total concentrations of a range of elements, including Al, As, Ca, Cd, Cr, Cu, Fe, Hg, Mg, Mn, Na, Ni, P, Pb, Ti, V and Zn. The steps involved in the production of the reference material (i.e. collection and preparation, homogeneity and stability studies, and certification) are described in detail.  相似文献   

9.
For detailed reconstructions of atmospheric metal deposition using peat cores from bogs, a comprehensive protocol for working with peat cores is proposed. The first step is to locate and determine suitable sampling sites in accordance with the principal goal of the study, the period of time of interest and the precision required. Using the state of the art procedures and field equipment, peat cores are collected in such a way as to provide high quality records for paleoenvironmental study. Pertinent field observations gathered during the fieldwork are recorded in a field report. Cores are kept frozen at -18 degree C until they can be prepared in the laboratory. Frozen peat cores are precisely cut into 1 cm slices using a stainless steel band saw with stainless steel blades. The outside edges of each slice are removed using a titanium knife to avoid any possible contamination which might have occurred during the sampling and handling stage. Each slice is split, with one-half kept frozen for future studies (archived), and the other half further subdivided for physical, chemical, and mineralogical analyses. Physical parameters such as ash and water contents, the bulk density and the degree of decomposition of the peat are determined using established methods. A subsample is dried overnight at 105 degree C in a drying oven and milled in a centrifugal mill with titanium sieve. Prior to any expensive and time consuming chemical procedures and analyses, the resulting powdered samples, after manual homogenisation, are measured for more than twenty-two major and trace elements using non-destructive X-Ray fluorescence (XRF) methods. This approach provides lots of valuable geochemical data which documents the natural geochemical processes which occur in the peat profiles and their possible effect on the trace metal profiles. The development, evaluation and use of peat cores from bogs as archives of high-resolution records of atmospheric deposition of mineral dust and trace elements have led to the development of many analytical procedures which now permit the measurement of a wide range of elements in peat samples such as lead and lead isotope ratios, mercury, arsenic, antimony, silver, molybdenum, thorium, uranium, rare earth elements. Radiometric methods (the carbon bomb pulse of (14)C, (210)Pb and conventional (14)C dating) are combined to allow reliable age-depth models to be reconstructed for each peat profile.  相似文献   

10.
Adopting recently developed clean laboratory techniques, antimony (Sb) and scandium (Sc) deposition were measured in a 63.72 m-long ice core (1842-1996) and a 5 m deep snow pit (1994-2004) collected on Devon Island, Canadian High Arctic. Antimony concentrations ranged from 0.07 to 108 pg g(-1) with a median of 0.98 pg g(-1)(N= 510). Scandium, used as a conservative reference element, revealed that dust inputs were effectively constant during the last 160 years. The atmospheric Sb signal preserved in the ice core reflects contamination from industrialisation, the economic boom which followed WWII, as well as the comparatively recent introduction of flue gas filter technologies and emission reduction efforts. Natural contributions to the total Sb inventory are negligible, meaning that anthropogenic emissions have dominated atmospheric Sb deposition throughout the entire period. The seasonal resolution of the snow pit showed that aerosols deposited during the Arctic winter, when air masses are derived mainly from Eurasia, show the greatest Sb concentrations. Deposition during summer, when air masses come mainly from North America, is still enriched in Sb, but less so. Snow and ice provide unambiguous evidence that enrichments of Sb in Arctic air have increased 50% during the past three decades, with two-thirds being deposited during winter. Most Sb is produced in Asia, primarily from Sb sulfides such as stibnite (Sb2S3), but also as a by-product of lead and copper smelting. In addition there is a growing worldwide use of Sb in automobile brake pads, plastics and flame retardants. In contrast to Pb which has gone into decline during the same interval because of the gradual elimination of gasoline lead additives, the enrichments of Sb have been increasing and today clearly exceed those of Pb. Given that the toxicity of Sb is comparable to that of Pb, Sb has now replaced Pb in the rank of potentially toxic trace metals in the Arctic atmosphere.  相似文献   

11.
Peat bog harvesting is an important industry in many countries, including Canada. To harvest peat, bogs are drained and drainage water is evacuated towards neighboring rivers, estuaries or coastal waters. High suspended sediment concentrations (SSC) were found in the drainage water at one particular site during the 2001–2002 spring seasons in New Brunswick (Canada). The main objective of this study was to verify this observation at other sites, compare SSC levels leaving harvested peat bogs with those leaving an unharvested bog, and to determine if high SSC events happen only in Spring or all year round. Suspended sediment concentrations were monitored downstream of three harvested peat bogs and an unharvested reference bog located in New Brunswick during the ice free seasons of 2003–2004. On average, SSC at the harvested sites exceeded 25 mg/l, which is the recommended daily maximum concentration, 72% of the time, while the same concentration was exceeded 30% of the time at the unharvested sites. SSC were found to be significantly higher at harvested sites than at the reference sites for all seasons. The highest SSC medians were recorded in the Fall but SSC was elevated in all seasons. High SSC levels in receiving waters may be caused by field ditching activities and insufficient sediment controls. Findings suggest the NB Peat Harvesting 25 mg/l SSC guideline should be reviewed.  相似文献   

12.
A peat core from a Swiss bog represents 2110 14C years of peat accumulation and provides a continuous record of atmospheric rare earth element (REE) deposition. This is the first study providing a time-series of all REE originating from the atmosphere. Concentrations of the 14 REE (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) were determined using inductively coupled plasma-mass spectrometry (ICP-MS) after dissolution of 200 mg aliquots of age-dated peat samples with 3 ml HNO3 and 0.1 ml HBF4 at 240 degrees C in a microwave autoclave. Strict quality control schemes were applied to ensure the accuracy of the applied analytical methodology. Previous analyses of selected REE by instrumental neutron activation analysis (INAA) in the same set of peat samples revealed that INAA frequently under- or overestimated REE concentrations in a systematic manner. Concentration profiles obtained for all REE were almost identical, except for Ce and Eu. Calculation of enrichment factors (EF) revealed a distinct depletion of heavy REE relative to light REE in peat samples since the beginning of the 19th century which marks the onset of the Industrial Revolution in Europe, suggesting a pronounced influence by anthropogenic activities. Enrichments of REE calculated using Sc as a reference element exceeded unity, relative to the Upper Continental Crust. Overall, EF in all peat samples ranged from 1.96 for Sm to 2.34 for Gd, with considerably lower EF for Ce (1.82) and Eu (1.44), respectively. A significant enrichment of all REE which may have been caused by military activities, was observed in the peat sample dating from World War II (1944); this exceptional sample, however, is not enriched in Ce. The concentration profiles of REE were similar but not identical to those of other lithogenic, conservative reference elements such as Sc, Y, Al, Zr and Ti. While it has been suggested that individual REE concentrations or the sum of REE can be used as a reference parameter to calculate crustal EF in environmental samples the data presented here indicates that anthropogenic emissions of REE cannot simply be ignored.  相似文献   

13.
Platinum, palladium, rhodium, iridium and osmium were found to be enriched relative to their expected natural concentrations in peat samples from Thoreau's Bog, an ombrotrophic peat bog in Concord, Massachusetts. The source of osmium into the bog was determined from its isotopic composition (187Os/188Os). Osmium is composed of 4% lithogenic osmium from atmospheric soil dust, 41% of anthropogenic osmium and 55% of osmium from a non-lithogenic, non anthropogenic source, with rain being a likely candidate for the latter. Significant anthropogenic and rain contributions are also expected for iridium. In contrast, platinum, palladium and rhodium are almost exclusively anthropogenic. The larger enrichments of platinum, palladium and rhodium indicate that automobile catalysts are the source of platinum group elements to Thoreau's bog. The bog is located approximately 300 m from a major road and, therefore, the occurrence of platinum elements is evidence for regional dispersion of these metals. The absence of a clear trend following the introduction of catalysts indicates that platinum group elements are not quantitatively conserved in peat with downward leaching and plants playing an important role in the accumulation of platinum group elements.  相似文献   

14.
Source apportionment study was performed, applying principal component analysis to the results of 221 chemical analyses of PM10 and PM2.5 samples collected daily from the industrial (but low traffic) Spanish town of Puertollano over a 14-month period during 2004-2005. Results reveal compositional variations attributable to different mixtures of natural and anthropogenic materials, mainly soil and rock dust (crustal), marine salt (only in PM10), petrochemical refinery emissions, and particles attributed to the combustion of local coal, which is unusually rich in Pb and Sb. During the study period there were 34 pollution episodes when PM10 exceeded 50 tg m(-3), mostly due to winter air temperature inversions, regional atmospheric stagnation, or African dust incursions (North African, NAF days: usually in summer). Whereas the crustal component during NAF episodes averaged 52% with a PM2.5/PM10 ratio of 0.54, this dropped to 29% and a PM2.5/PM10 of 0.67 during non-NAF days when anthropogenic materials predominated. Abnormally enhanced concentrations of pathfinder metallic trace elements provide additional evidence for source apportionment: thus aerosols with raised levels of Pb and Sb are associated with local coal combustion, Ni and V can be linked to petrochemical PM emissions, and Ti, Mn, Rb, and Ce are particularly characteristic of crustal dust incursions.  相似文献   

15.
The biomonitors Hypnum cupressiforme and Xanthoria parietina were used to assess the deposition of trace elements and their possible origin in the Prades Mountains, a protected Mediterranean forest area of NE Spain with several pollution sources nearby. Al, As, Cd, Co, Cu, Cr, Ni, Pb, Sb, Ti, V, and Zn were determined in 16 locations within this protected area. Soil trace element concentrations were also ascertained to calculate enrichment factors (EF) and use them to distinguish airborne from soilborne trace element inputs. In addition, lichen richness was measured to further assess atmospheric pollution. EF demonstrated to be useful not only for the moss but also for the lichen. Cd, Cr, Cu, Ni, and Zn presented values higher than three in both biomonitors. These trace elements were also the main ones emitted by the potential sources of pollutants. The distance between sampling locations and potential pollution sources was correlated with the concentrations of Cu, Sb, and Zn in the moss and with Cr, Ni, and Sb in the lichen. Lichen richness was negatively correlated with lichen Cu, Pb, and V concentrations on dry weight basis. The study reflected the remarkable influence that the pollution sources have on the presence of trace elements and on lichen species community composition in this natural area. The study highlights the value of combining the use of biomonitors, enrichment factors, and lichen diversity for pollution assessment to reach a better overview of both trace elements’ impact and the localization of their sources.  相似文献   

16.
An on-line method has been developed for separating inorganic and organic bound uranium species present in river water samples. The method utilised a small chelating resin (Hyphan) column incorporated into the sample introduction manifold of an ICP-MS instrument. The method was evaluated for samples from rivers on Dartmoor (Devon, UK), an area of granite overlain with peat bogs. The results indicate that organic-uranium species form a major proportion (80%) of the total dissolved uranium present. Further work with synthetic water samples indicated that the level of dissolved organic carbon played a greater role in determining the level of organic-uranium species than did sample pH. Computer models for the water samples were constructed using the WHAM program (incorporating uranium data from the Nuclear Energy Agency Thermochemical Database project) in order to predict the levels of organic-uranium species that would form. By varying the proportion of humic and fulvic acids used in the humic component, predictions within 10% of the experimental results were obtained. The program did exhibit a low bias at higher pH values (7.5) and low organic carbon concentrations (0.5 microg ml(-1)), but under the natural conditions prevalent in the Dartmoor water samples, the model predictions were successful.  相似文献   

17.
Methylated species of antimony, arsenic and tin were examined in urban soils of the Ruhr basin, near the cities of Duisburg and Essen, Germany. The main aim of this study was to investigate the occurrence of mono-, di- and trimethylated species of these elements in urban soils. The influence of historical and present land use upon the species content was examined. The distribution of inorganic As, Sb and Sn and their methylated species along the profile depth was investigated. As, Sb and Sn speciation was performed by pH-gradient hydride generation purge and trap gas chromatography, followed by inductively-coupled plasma mass spectrometry (HG-PT-GC/ICP-MS). Species' structures were confirmed by GC-EI/MS-ICP-MS. Monomethylated Sb and As were the dominant species detected: the concentration of these metal(loid) species varied between <0.07-56 microg kg(-1) per dry mass. All dimethylated species and monomethyltin concentrations were between <0.01-7.6 microg kg(-1) per dry mass, and for the trimethylated species of all examined elements, concentrations between <0.001-0.63 microg kg(-1) per dry mass were detected. The highest organometal(loid) concentrations were observed in agricultural soils and garden soils; lower concentrations were found in the soils of abandoned industrial sites (wasteland, primary forest and grassland) and a flood plain soil of the Rhine. This result can be ascribed to both the cultivation and the increased biological activity of the agricultural soils, and the generally higher contamination, the disturbed structure and the artificial substrates (deposits from industrial sources) of the abandoned industrial soils. Due to periodical sedimentation, the flood plain profile was the only one where no depth dependence of organometal(loid) species concentration was detected. The other soil profiles showed a decrease of species content with increasing depth; this was particularly noticeable in soils with a clear change from a horizon with an organic character towards a mineral horizon, i.e. decreasing vitality from profile top to bottom. It is not as yet clear whether the organometal(loid) species are formed in the mineral horizons of the profiles or whether they are displaced from the organic, biologically-active horizons towards the mineral horizons. Field studies revealed that soil parameters like pH, water content or temperature did not correlate significantly with the degree of biomethylation observed. In contrast to the lower in vitro biomethylation efficiency of Sb vs. As in microbial incubations, we consistently detected higher proportions of transformed Sb compounds in situ in soil samples. These data may indicate a need to re-examine the currently accepted model of Sb biogeochemical cycling in the real environment.  相似文献   

18.
The tidal Anacostia River in Washington DC has long been impacted by various sources of chemical pollution over the past 200 years. To explore more recent inputs of various chemicals, six sediment cores were collected for dating and chemical analysis in the downstream section of the tidal Anacostia River. Profiles of contaminants in sediment cores can be useful in determining management direction and effectiveness of pollution controls over time. There were two main objectives for this investigation: (1) determine current sediment contaminant levels; (2) determine a historical perspective of the sediment changes in contamination using (137)Cs and (210)Pb dating. The determination of an age-depth relationship using (210)Pb and (137)Cs dating gave somewhat different results, suggesting that the assumptions of (210)Pb dating were not met. Using the (137)Cs horizon allowed an assignment of approximate sediment accumulation rates and hence an age-depth relationship to contaminant events in the upper portions of the cores. Total PAHs showed higher concentrations at depth and lower surface concentrations. In the upper sections, PAHs were a mixture of combustion and petrogenic sources, while at depth the signature appeared to be of natural origins. Total PCBs, DDTs and chlordane concentrations showed a maximum in recent sediments, decreasing towards the surface. PCBs had lower molecular weight congeners near the surface and higher molecular weights at depth. A phthalate ester, DEHP, appeared in the mid 1940-1950s, and decreased towards the surface. Trace elements fell roughly into three groups. Fe, Mn, and As were in approximately constant proportion to Al, except in some deeper, sandy sediments, where they showed enrichments linked to redox conditions. Ag, Cd, Cu, Hg, Pb, and Zn had low concentrations in the deepest sediments, high concentrations at mid-depths, and declines to intermediate levels at the surface. Ni and Cr followed neither of these patterns closely. We observed that many contaminants appeared in the Anacostia sediments at various times, and reached relatively high concentrations in the past, but are now showing declines in loadings. In some cases, such as PCBs, DDT, chlordane, and Pb from leaded gasoline, these declines can be clearly linked to the discontinuation of their use for environmental reasons. For other contaminants (e.g., PAHs, DEHP, selected metals) these declines are more likely the result of changes in production, usage and waste control.  相似文献   

19.
Whole tissue trace metal concentrations of ten metals in eight common coastal Australian polychaete species collected from uncontaminated locations were measured. The mean concentration range for each trace metal was: Mn: 2.6-13 microg g(-1); Co: 0.8-4.6 microg g(-1); Cu: 3.4-26 microg g(-1); Zn: 47-225 microg g(-1); As: 18-101 microg g(-1); Se: 2.2-20.4 microg g(-1); Ag: 0.03-2.5 microg g(-1); Cd: 0.07-17 microg g(-1); Hg: 0.08-0.88 microg g(-1) and Pb: 0.09-3.2 microg g(-1)dry mass. Principal components analysis of trace metal signatures revealed that the habitat, i.e. exposed coast sand or rock, estuarine sand or estuarine mud substrate in which a polychaete species was found, had a significant influence on the bioaccumulation of six trace metals (Mn, Cu, Zn, Ag, Cd and Pb). However, there is no clear relationship between trace metal concentrations in substrates and polychaetes. The results of the current study contribute to a reference dataset of polychaete species-specific natural background trace metal concentrations for use in determining the extent of trace metal contamination by urban and industrial sources.  相似文献   

20.
2021年1-3月,采集湖南省某典型金属冶炼城市不同功能区的降尘样品,分析测定了17种重金属元素含量,其中15种重金属元素含量超出了湖南背景值,分别为Ag、Fe、Cd、Ti、Sb、Tl、Pb、As、Zn、Cu、Mo、Ni、Cr、Ba、Mn。采用地累积指数法、潜在生态危害指数法和健康风险评价模型对大气降尘中重金属可能造成的生态风险和健康风险进行评价。结果表明:受长期的有色金属冶炼影响,Ag、Cd、Fe、Sb、Ti、Tl 6种重金属达到了极重度污染,Pb、As、Zn、Cu、Mo在中度污染程度以上。工业区的综合生态危害指数远高于工业居民混合区、工业农业混合区、居民区和交通区,达到了极强生态危害级别。健康风险评价结果显示:大气降尘中As和Pb存在非致癌风险,As、Cd和Ni存在致癌风险,且经口摄入是最主要的暴露途径。与青少年和儿童相比,大气降尘中重金属对成人造成的风险较高,且成年女性面临的风险高于成年男性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号