首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
通过对不同基质地表水样中水合肼在p H、温度、光照、时间等条件下进行保存的研究,确定对其保存效果的影响为:p H水合肼浓度时间温度光照。建议地表水样品使用棕色玻璃瓶采集,调节p H至2.00后,于4℃下避光保存;洁净的地表水样保存时间不超过2周,黄河等含泥沙较多的水合肼样品应立即分析,保存时间至多不超过2 d。  相似文献   

2.
丁基黄原酸是水质监测的重要项目之一。水中丁基黄原酸的测定,在样品采集保存、前处理及仪器分析各阶段都存在一定的技术难点。实际分析时很容易出现测定结果不理想,甚至定性定量错误等问题。结合实验对丁基黄原酸测定中容易出现的问题及注意事项进行探讨,正确区分丁基黄原酸及其盐,有效保存样品,采用低损失的前处理方法以及选择性好的分析仪器,有利于提高丁基黄原酸测定的准确性。众多丁基黄原酸测定方法中,液相色谱质谱法、离子色谱法以及液相色谱法在选择性和灵敏度方面更具优势,也可用于其他方法检出丁基黄原酸时对测定进行确认。  相似文献   

3.
通过优化色谱条件、稀释样品、加入氨水等措施,建立了超高效液相色谱-质谱法直接进样分析地表水及自来水中草甘膦和丁基黄原酸的方法。草甘膦和丁基黄原酸在各自线性范围内线性关系良好,相关系数(R2) 0. 999。方法检出限分别为5. 20(前处理中对样品进行了20倍稀释)和0. 08μg/L,远低于国家标准限值要求。草甘膦和丁基黄原酸的加标回收率分别为73. 8%~92. 3%和85. 0%~113. 0%,样品间的标准偏差均10%,准确度和精密度均满足质控要求。该方法简化了样品前处理过程,成功降低了基质效应对草甘膦和丁基黄原酸测定的干扰。  相似文献   

4.
总磷是评价水质的一项重要指标,现对样品中悬浮物(泥沙)含量、加酸保存样品保存时间与调节pH值对总磷测定的影响进行研究。结果表明,随着沉降时间的延长总磷测定值逐渐降低,加酸保存的样品总磷测定值随保存时间的延长而增高,且测定时是否调回中性对测定结果基本无影响。故进行地表水中总磷的测定需严格按照标准规定的样品采样过程控制采样沉降时间,加酸保存,24 h以内进行测定,测定时无需调回中性。  相似文献   

5.
建立了一种吹扫捕集-气相色谱/质谱法同时测定水中的乙醛、丙烯醛、丙烯腈、吡啶、松节油和丁基黄原酸的分析方法。结果表明,吹扫时间、脱附时间、脱附温度和盐酸用量是影响目标化合物测定的关键因素,对吹扫捕集条件优化后,各目标化合物线性良好,相关系数均0.998,检出限为0.13~2.22μg/L,加标回收率为80.5%~111%,相对标准偏差为1.1%~10.9%,能够满足地表水环境质量标准的要求。  相似文献   

6.
建立了顶空-气相色谱-质谱联用测定水中丁基黄原酸的方法。丁基黄原酸在酸性条件下分解成易挥发的二硫化碳,可用顶空-气相色谱分离、质谱定量测定。与传统的分光光度法相比,该法简便、快捷,在0.010~1.00 mg/L范围内线性良好,准确度高,加标回收率为95.1%~100.6%,精密度好,相对标准偏差为3.1%~6.5%,方法检出限为0.002 mg/L,适用于水中丁基黄原酸的监测。  相似文献   

7.
应用正交试验法探讨挥发酚水质样品的最优保存条件,找出了对挥发酚水质样品保存影响最大的因素为保存温度,其次为样品的pH值。经实验证明,挥发酚样品浓度为0.2mg/L,温度5℃,保存时间在8h内,pH值为4的条件下,挥发酚水质样品的保存效果最好。  相似文献   

8.
采用顶空气相色谱/质谱法联用技术测定水中的四乙基铅,对涉及的关键操作环节及重点技术问题进行了研究。结果表明,在避光条件下于4℃低温冷藏并密封保存,添加甲醇作为保护剂,保存时间不应超过3 d。实验选择进样口温度为220℃,顶空瓶压力为96.52 kPa,调节载气流量设置实际分流比为51,可以有效改善顶空进样测定样品时存在的不出峰、不稳定或灵敏度降低的问题。对地表水、自来水及生活污水实际样品进行四乙基铅测定和加标回收分析,加标回收率为81.0%~110%,相对标准偏差(RSD)为2.5%~7.4%,能够满足《水质四乙基铅的测定顶空/气相色谱质谱法》(HJ 959—2018)的测定要求。将顶空进样法与吹扫捕集法进行比较,结果表明顶空进样法稳定性更好,适合大批量四乙基铅样品的连续测定。  相似文献   

9.
1试剂提纯 :将 1 0 0 ml2 % 4 - AAP溶液置于50 0 ml分液漏斗中 ,加 5ml三氯甲烷盖塞后剧烈摇荡 2 min,静置分层 ,上清液留作显色液。 2缓冲溶液的 p H值控制 :缓冲溶液 p H值随配制时间而变化 ,放置两周后应适当增加缓冲溶液用量或重新配制 ,使其达到水溶液 p H值在 9.6~ 1 1 .5范围内 ,否则会使水样吸光度偏高。 3萃取时间控制 :在测定低浓度挥发酚时 ,加入氯仿后适当把振摇时间增加至 3min,其结果更接近保证值。 4铁氰化钾反应时间控制 :同一批水样数量最好不超过 1 0个。每个水样间隔 3~ 4min加铁氰化钾 ,使每个样品保证在加入铁氰…  相似文献   

10.
吹扫捕集-气相色谱-质谱法测定水中痕量丁基黄原酸   总被引:1,自引:1,他引:0  
建立了吹扫捕集-气相色谱-质谱联用测定水中丁基黄原酸的方法.丁基黄原酸在酸性条件下分解成易挥发的二硫化碳,经吹扫捕集富集后用气相色谱分离质谱定量测定.与传统的分光光度法相比,更简便快捷,在0.25~10.0μg/L范围内线性良好,准确度高,添加回收率为98.3%~105%,精密度好,相对标准偏差为5.92% ~ 10.7%,方法检出限为0.07μg/L.与顶空法相比,灵敏度更高.  相似文献   

11.
Material Disposal Area G is the primary low-levelradioactive waste disposal site at Los Alamos NationalLaboratory, New Mexico, and is adjacent to Pueblo of SanIldefonso lands. Pueblo residents and Los Alamos scientists areconcerned about radiological doses resulting from uptake of AreaG radionuclides by mule deer (Odocoileus hemionus) andRocky Mountain elk (Cervus elaphus), then consumption ofdeer and elk meat by humans. Tissue samples were collected fromdeer and elk accidentally killed near Area G and were analyzedfor 3H, 90Sr, total U, 238Pu, 239, 240Pu,241Am, and 137Cs. These data were used to estimatehuman doses based on meat consumption of 23 kg y-1. Humandoses were also modeled using RESRAD, and dose rates to deer andelk were estimated with a screening model. Dose estimates tohumans from tissue consumption were 2.9 × 10-3 mSv y-1and 1.6 × 10-3 mSv y-1 from deer and elk, respectively,and RESRAD dose estimates were of the same order of magnitude. Estimated dose rates to deer and elk were 2.1 × 10-4 mGyd-1 and 4.7 × 10-4 mGy d-1, respectively. Allestimated doses were significantly less than established exposurelimits or guidelines.  相似文献   

12.
Metal concentrations in deciduous tree leaves from urban areas in Poland   总被引:1,自引:0,他引:1  
Accumulation of metals in deciduous tree foliage fromurban areas in western-south Poland was monitored duringthe vegetation season of 2000 year. Concentrations of Al,Ba, Ca, Cd, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Sr, Ti and Znwere measured in birch, willow, linden and maple leavesusing the ICP-AES method. Seasonal variations of metalconcentrations and their relations with sampling sitewere investigated. The most dynamic accumulation of Al,Cd, Cr, Ni and Pb was observed for examined species. Thehighest differences in element concentrations forinvestigated sites were found for Ba, Cd, Mn and Ni.Interelement correlations were investigated. In allfoliar samples synergistic relationships between Al–Crand Ca-Sr were found. Statistically significant negativecorrelations were observed only for Cd and Ti in birch leaves.  相似文献   

13.
The stable nitrogen isotope ratios of some biota have been used as indicators of sources of anthropogenic nitrogen. In this study the relationships of the stable nitrogen isotope ratios of marsh plants, Iva frutescens (L.), Phragmites australis (Cav.) Trin ex Steud, Spartina patens (Ait.) Muhl, Spartina alterniflora Loisel, Ulva lactuca (L.), and Enteromorpha intestinalis (L.) with wastewater nitrogen and land development in New England are described. Five of the six plant species (all but U. lactuca) showed significant relationships of increasing δ 15N values with increasing wastewater nitrogen. There was a significant (P < 0.0001) downward shift in the δ 15N of S. patens (6.0 ± 0.48‰) which is mycorrhizal compared with S. alterniflora (8.5 ± 0.41‰). The downward shift in δ 15N may be caused by the assimilation of fixed nitrogen in the roots of S. patens. P. australis within sites had wide ranges of δ 15N values, evidently influenced by the type of shoreline development or buffer at the upland border. In residential areas, the presence of a vegetated buffer (n = 24 locations) significantly (P < 0.001) reduced the δ 15N (mean = 7.4 ± 0.43‰) of the P. australis compared to stands where there was no buffer (mean = 10.9 ± 1.0‰; n = 15). Among the plant species, I. frutescens located near the upland border showed the most significant (R 2 = 0.64; P = 0.006) inverse relationship with the percent agricultural land in the watershed. The δ 15N of P. australis and I. frustescens is apparently an indicator of local inputs near the upland border, while the δ 15N of Spartina relates with the integrated, watershed-sea nitrogen inputs.  相似文献   

14.
Concentrations of 13 radionuclides (137Cs, 129I, 60Co, 152Eu, 90Sr, 99Tc, 241Am, 238Pu, 239,249Pu, 234U, 235U, 236U, 238U were examined in seven species of invertebrates from Amchitka and Kiska Islands, in the Aleutian Chain of Alaska, using gamma spectroscopy, inductively coupled plasma mass spectroscopy, and alpha spectroscopy. Amchitka Island was the site of three underground nuclear test (1965–1971), and we tested the null hypotheses that there were no differences in radionuclide concentrations between Amchitka and the reference site (Kiska) and there were no differences among species. The only radionuclides where composite samples were above the Minimum Detectable Activity (MDA) were 137Cs, 241Am, 239,249Pu, 234U, 235U, 236U, and 238U. Green sea urchin (Strongylocentrotus polyacanthus), giant chiton (Cryptochiton stelleri), plate limpets (Tectura scutum) and giant Pacific octopus (Enteroctopus dofleini) were only tested for 137Cs; octopus was the only species with detectable levels of 137Cs (0.262 ± 0.029 Bq/kg, wet weight). Only rock jingle (Pododesmus macroschisma), blue mussel (Mytilus trossulus) and horse mussel (Modiolus modiolus) were analyzed for the actinides. There were no interspecific differences in 241Am and 239,240Pu, and almost no samples above the MDA for 238Pu and 236U. Horse mussels had significantly higher concentrations of 234U (0.844 ± 0.804 Bq/kg) and 238U (0.730 ± 0.646) than the other species (both isotopes are naturally occurring). There were no differences in actinide concentrations between Amchitka and Kiska. In general, radionuclides in invertebrates from Amchitka were similar to those from uncontaminated sites in the Northern Hemisphere, and below those from the contaminated Irish Sea. There is a clear research need for authors to report the concentrations of radionuclides by species, rather than simply as ‘shellfish’, for comparative purposes in determining geographical patterns, understanding possible effects, and for estimating risk to humans from consuming different biota.  相似文献   

15.
We grew leek (Allium porrum) in soils of two shooting ranges heavily contaminated with heavy metals in the towns of Zuchwil and Oberuzwil in Switzerland as a bioassay to test theactivity of arbuscular mycorrhizal (AM) fungi in these soils.Soil samples were taken from (1) front of the shooting house(HOUSE), (2) the area between house and target (FIELD) and (3) the berm (BACKSTOP). Samples of Ribwort plantain (Plantagolanceolata) growing naturally within the shooting ranges werealso collected and the colonization of its roots by mycorrhizalfungi was measured. The number of AM spores in the soils wassignificantly reduced concomitant with the increase in thedegree of soil contamination with metals. In Zuchwil,mycorrhizal fungi equally colonized roots of Ribwort plantainsampled from BACKSTOP and HOUSE. In Oberuzwil, however, plantsfrom BACKSTOP had lower colonization when compared with thosesampled from HOUSE. Colonization of leek was strongly reducedin the BACKSTOP soil of Zuchwil and slightly reduced in theBACKSTOP soil of Oberuzwil when compared with plants grown inrespective HOUSE soil. Concentrations of Cd, Cr, Cu, Ni, Pb andZn in the leaves of leek grown in the BACKSTOP soil was withinthe range considered toxic for human consumption. This pointsto the high degree of bio-availability of these metal in thesesoils. Significant decrease in the number of mycorrhizal sporesin the BACKSTOP soils in Zuchwil and the low colonization ofleek roots grown in these soils point to possible changes inthe species diversity of mycorrhizal fungi in these soils.  相似文献   

16.
Kelp may be useful as a bioindicator because they are primary producers that are eaten by higher trophic level organisms, including people and livestock. Often when kelp or other algae species are used as bioindicators, the whole organism is homogenized. However, some kelp can be over 25 m long from their holdfast to the tip of the blade, making it important to understand how contaminant levels vary throughout the plant. We compared the levels of arsenic, cadmium, chromium, lead, manganese, mercury and selenium in five different parts of the kelp Alaria nana to examine the variability of metal distribution. To be useful as a bioindicator, it is critical to know whether levels are constant throughout the kelp, or which part is the highest accumulator. Kelp were collected on Adak Island in the Aleutian Chain of Alaska from the Adak Harbor and Clam Cove, which opens onto the Bering Sea. In addition to determining if the levels differ in different parts of the kelp, we wanted to determine whether there were locational or size-related differences. Regression models indicated that between 14% and 43% of the variation in the levels of arsenic, cadmium, chromium, manganese, mercury, and selenium was explained by total length, part of the plant, and location (but not for lead). The main contributors to variability were length (for arsenic and selenium), location (mercury), and part of the plant (for arsenic, cadmium, chromium and manganese). The higher levels of selenium occurred at Clam Cove, while mercury was higher at the harbor. Where there was a significant difference among parts, the holdfast had the highest levels, although the differences were not great. These data indicate that consistency should be applied in selecting the part of kelp (and the length) to be used as a bioindicator. While any part of Alaria could be collected for some metals, for arsenic, cadmium, chromium, and manganese a conversion should be made among parts. In the Aleutians the holdfast can be perennial while the blade, whipped to pieces by winter wave action, is regrown each year. Thus the holdfast may be used for longer-term exposure for arsenic, cadmium, chromium and manganese, while the blade can be used for short-term exposure for all metals. Cadmium, lead and selenium were at levels that suggest that predators, including people, may be at risk from consuming Alaria. More attention should be devoted to heavy metal levels in kelp and other algae from Adak, particularly where they may play a role in a subsistence diets.  相似文献   

17.
Biological damage to sensitive aquatic ecosystems is among the most recognisable, deleterious effects of acidic deposition. We compiled a large spatial database of over 2000 waterbodies across southeastern Canada from various federal, provincial and academic sources. Data for zooplankton, fish, macroinvertebrate (benthos) and loon species richness and occurrence were used to construct statistical models for lakes with varying pH, dissolved organic carbon content and lake size. pH changes, as described and predicted using the Integrated Assessment Model (Lam et al., 1998; Jeffries et al., 2000), were based on the range of emission reductions set forth in the Canada/US Air Quality Agreement (AQA). The scenarios tested include 1983, 1990, 1994 and 2010 sulphate deposition levels. Biotic models were developed for five regions in southeastern Canada (Algoma, Muskoka, and Sudbury, Ontario, southcentral Québec, and Kejimkujik, Nova Scotia) using regression tree, multiple linear regression and logistic regression analyses to make predictions about recovery after emission reductions. The analyses produced different indicator species in different regions, although some species showed consistent trends across regions. Generally, the greatest predicted recovery occurred during the final phase of emission reductions between 1994 and 2010 across all taxonomic groups and regions. The Ontario regions, on average, were predicted to recover to a greater extent than either southcentral Québec or the Kejimkujik area of Nova Scotia. Our results reconfirm that pH 5.5–6.0 is an important threshold below which damage to aquatic biota will remain a major local and regional environmental problem. This damage to biodiversity across trophic levels will persist well into the future if no further reductions in sulphate deposition are implemented.  相似文献   

18.
Nitrogen (N) pollution is a growing concern in forests of the greater Sierra Nevada, which lie downwind of the highly populated and agricultural Central Valley. Nitrogen content of Letharia vulpina tissue was analyzed from 38 sites using total Kjeldahl analysis to provide a preliminary assessment of N deposition patterns. Collections were co-located with plots where epiphytic macrolichen communities are used for estimating ammonia (NH3) deposition. Tissue N ranged from 0.6% to 2.11% with the highest values occurring in the southwestern Sierra Nevada (range: 1.38 to 2.11). Tissue N at 17 plots was elevated, as defined by a threshold concentration of 1.03%. Stepwise regression was used to determine the best predictors of tissue N from among a variety of environmental variables. The best model consisted only of longitude (r 2 = 0.64), which was reflected in the geographic distribution of tissue values: the southwestern Sierra Nevada, the high Sierras near the Tahoe Basin, and the Modoc Plateau, are three apparent N hotspots arranged along the tilted north–south axis of the study area. Withholding longitude and latitude, the best regression model suggested that NH3 estimates and annual number of wetdays interactively affect N accumulation (r 2 = 0.61; % N ∼ NH3 + wetdays + (NH3 × wetdays)). We did not expect perfect correspondence between tissue values and NH3 estimates since other N pollutants also accumulate in the lichen thallus. Additionally, other factors potentially affecting N content, such as growth rate and leaching, were not given full account.  相似文献   

19.
Pesticide applications to agricultural lands in California, USA, are reported to a central data base, while data on water and sediment quality are collected by a number of monitoring programs. Data from both sources are geo-referenced, allowing spatial analysis of relationships between pesticide application rates and the chemical and biological condition of water bodies. This study collected data from 12 watersheds, selected to represent a range of pesticide usage. Water quality parameters were measured during six surveys of stream sites receiving runoff from the selected watershed areas. This study had three objectives: to evaluate the usefulness of pesticide application data in selecting regional monitoring sites, to provide information for generating and testing hypotheses about pesticide fate and effects, and to determine whether in-stream nitrate concentration was a useful surrogate indicator for regional monitoring of toxic substances. Significant correlations were observed between pesticide application rates and in-stream pesticide concentrations (p < 0.05) and toxicity (p < 0.10). In-stream nitrate concentrations were not significantly correlated with either the amount of pesticides applied, in-stream pesticide concentrations, or in-stream toxicity (all p > 0.30). Neither total watershed area nor the area in which pesticide usage was reported correlated significantly with the amount of pesticides applied, in-stream pesticide concentrations, or in-stream toxicity (all p > 0.14). In-stream pesticide concentrations and effects were more closely related to the intensity of pesticide use than to the area under cultivation.  相似文献   

20.
With increasing interest in assessing the health or well-being ofcommunities and ecosystems, birds are being used asbioindicators. Coloniallynesting species breed mainly in coastal areas that are alsopreferred for humandevelopment, exposing the birds to various pollutants. Inthis paper concentrations of heavy metal and selenium in the feathers ofHerring Gulls(Larus argentatus) nesting in several colonies fromMassachusetts toDelaware are reported. There were significant differencesamong colonies forall metals, with metal concentrations being two to nearly fivetimes higher atsome colonies than others. Selenium showed the leastdifference, and cadmium showed the greatest difference among sites. Concentrations of lead werehighest at Pralls Island; mercury was highest at Shinnecock,Huckleberry andHarvey, and manganese was highest at Captree.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号