首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
Freshwater resources are increasingly scarce due to human activities, and the understanding of water quality variations at different spatial and temporal scales is necessary for adequate management. Here, we analyze the hypotheses that (1) the presence of a wastewater treatment plant (WWTP) and (2) a polluted tributary that drains downstream from the WWTP change the spatial patterns of physicochemical variables (pH, turbidity, dissolved oxygen, and electrical conductivity) and nutrient concentrations (reactive soluble phosphorus, total phosphorus, nitrogen series, total nitrogen, and total dissolved carbon) along a mid-order river in SE Brazil and that these effects depend on rainfall regime. Six study sites were sampled along almost 4 years to evaluate the impacts of human activities, including sites upstream (1–3) and downstream (5–6) from the WWTP. The impacts were observed presenting an increasing trend from the source (site 1) towards Água Quente stream (site 4, the polluted tributary), with signs of attenuation at site 5 (downstream from both WWTP and site 4) and the river mouth (site 6). Input of nutrients by rural and urban runoff was observed mainly at sites 2 and 3, respectively. At sites 4 and 5, the inputs of both untreated and treated wastewaters increased nutrient concentrations and changed physicochemical variables, with significant impacts to Monjolinho River. Seasonal variations in the measured values were also observed, in agreement with the pluviometric indexes of the region. Univariate analyses suggested no effect of the WWTP for most variables, with continued impacts at sites downstream, but non-parametric multivariate analysis indicated that these sites were recovering to chemical characteristics similar to upstream sites, apparently due to autodepuration. Therefore, multivariate methods that allow rigorous tests of multifactor hypotheses can greatly contribute to determine effects of both point and non-point sources in river systems, thus contributing to freshwater monitoring and management.  相似文献   

2.
The aim of this study was to evaluate the water quality of the Cértima River basin (Central Portugal). For that purpose, surface water samples were collected in March, May and July 2003, at 10 selected sampling sites, and were analysed for physicochemical parameters, namely temperature, conductivity, pH, total suspended solids, dissolved oxygen, biochemical oxygen demand (BOD5), Kjeldahl nitrogen and total phosphorus. Results revealed an acceptable water quality during the spring season. Maxima of 64 mg dm−3 for BOD5, 39 mg dm−3 for Kjeldahl nitrogen, and 5.2 mg dm−3 for total phosphorus, were recorded during summer, indicating a significant degradation of the water quality in a river stretch located downstream of the town of Mealhada. These values, which did not comply with the objectives of minimum quality for surface waters prescribed by the Portuguese legislation, were related to domestic wastewater discharges and runoff waters from a cattle farm. Besides their effects on the middle stretch of the river, these pollution sources were the most likely cause of the high nutrient load in downstream waters, and thus may have a major impact on the trophic status of Pateira de Fermentelos, a sensitive wetland area located in the lower Cértima basin.  相似文献   

3.
为研究浙江省水体富营养化特征,对全省历年省控断面地表水水质、污染源和重点藻华高发河流营养盐通量等数据进行了统计分析。结果表明:全省水体营养盐水平总体仍处于高位,重点流域富营养化问题突出,省控断面富营养、重富营养占比分别为78.7%和43.0%,营养盐已持续成为地表水首要污染超标因子。通过近年来的集中整治,浙江省水体营养盐浓度下降明显。但治理过程中也出现了总氮减排滞后,部分水域总磷浓度反弹等不利现象。特别是相应的藻类生长势能尚未进入下降敏感区间,对藻华防控贡献有限。同时,全省入河营养盐城镇生活源和农业面源占比突出,总氮合计占89.27%,总磷占95.45%。重点流域地表径流对营养盐入河通量贡献明显,汛期其对河流总磷浓度的贡献明显高于固定源排放。建议在营养盐总量控制、跨部门协调机制、水资源配置、农业面源管理、城镇雨污管网建设、雨污处理以及河流生态修复等方面加强应对。  相似文献   

4.
Human activities have altered the balance of ecosystems to the detriment of natural environments. Eutrophication is a serious risk in Yucatán, a state in the eastern peninsula of México where groundwater supplies the only freshwater to a karst shelf environment. While economic development in Yucatán is increasing, environmental awareness is lagging, and efficient waste treatment systems are lacking. To assess potential nitrogen and phosphorus inputs into the coastal zone of Yucatán, we analyzed government reports and the chemical composition of groundwater and aquaculture wastewater. Swine, poultry, and tourism are revealed as the main continental nutrient sources, while groundwater with high nitrate concentrations is the principal coastal nutrient source, a pattern similar to other river discharges around the world. This study demonstrates that environmental risk management practices must be implemented in the Yucatán region to protect groundwater quality.  相似文献   

5.
The Poxim River is one of Sergipe State’s major waterways. It supplies water to the State capital, Aracaju, but is threatened by urban and agricultural developments that compromise both the quantity and the quality of the water. This has direct impacts on the daily lives of the region’s population. In this work, a multivariate analytical approach was used to investigate the physical and chemical characteristics of the water in the river basin. Four sampling campaigns were undertaken, in November 2005, and in February, May, and September 2006, at 15 sites distributed along the Poxim. The parameters analyzed were conductivity, turbidity, color, total dissolved solids, dissolved oxygen, alkalinity, hardness, chlorophyll-a, and nutrients (total phosphorus, dissolved orthophosphate, nitrite, nitrate, ammoniacal nitrogen, and total nitrogen). Dissolved oxygen contents were very low in the Poxim-Açu River (1.0–2.8), the Poxim River (1.6–4.6), and the estuarine region (1.7–5.1), due to the dumping of wastes and discharges of domestic and industrial effluents containing organic matter into fluvial and estuarine regions of the Poxim. Factor analysis identified five components that were indicative of the quality of the water, and that explained 81.73 % of the total variance.  相似文献   

6.
We estimate the nutrient budget in a temporary Mediterranean river basin. We use field monitoring and modelling tools to estimate nutrient sources and transfer in both high and low flow conditions. Inverse modelling by the help of PHREEQC model validated the hypothesis of a losing stream during the dry period. Soil and Water Assessment Tool model captured the water quality of the basin. The ‘total daily maximum load’ approach is used to estimate the nutrient flux status by flow class, indicating that almost 60 % of the river network fails to meet nitrogen criteria and 50 % phosphate criteria. We recommend that existing well-documented remediation measures such as reforestation of the riparian area or composting of food process biosolids should be implemented to achieve load reduction in close conjunction with social needs.  相似文献   

7.
Suspended sediment and nutrient loadings from agricultural watersheds have lead to habitat degradation in Lake Takkobu. To examine their relationships with land-use activities, we monitored sediment, nutrient and water discharges into the lake for a 1-year sampling period. The Takkobu River contributed the largest portion of the annual water discharge into the lake, compared with the other tributaries. During dry conditions, lake water flowed into the Kushiro River, and conversely during flooding, Kushiro River water flowed into the lake. Inflows from the Kushiro River had a high proportion of inorganic matter, with high concentrations of total nitrogen and total phosphorus, attributed to agricultural land-use development and stream channelization practiced since the 1960s in the Kushiro Mire. Nutrient loadings from these two rivers were significantly higher during flooding than in dry conditions. However, there was no clear correlation between river discharge and nutrient concentrations. Since land-use activities in the Kushiro River and Takkobu River watersheds were concentrated near rivers, nutrients easily entered the drainage system under low flow conditions. In contrast, water discharged from small, forest-dominated watersheds contained a low proportion of inorganic matter, and low nutrient concentrations. The suspended sediment delivered to the lake during the sample period was estimated as approximately 607 tons, while the total nitrogen and total phosphorus inflows were about 10,466 and 1,433 kg, respectively. Suspended sediment input into the lake was 65%, and total nitrogen and total phosphorus were 40% and 48%, respectively, being delivered by the Kushiro River.  相似文献   

8.
In this study, baseflow and storm discharges were monitored in seven watersheds of varying development density to document the effects of development on stream water quality. In addition, two of the watersheds contained package wastewater treatment facilities, which were evaluated as an alternative to residential on-site septic systems. Monthly grab samples of baseflow and flow-proportional samples of storm event discharge were collected and analyzed for nitrogen, phosphorus, sediment, and bacteria. For the five watersheds without wastewater treatment facilities, a significant linear relationship was documented between fecal coliform and enterococci levels in baseflow samples and the percentage of residential or impervious area. For the two watersheds with wastewater discharge, bacteria levels were significantly greater than those from the two relatively undeveloped watersheds. These results indicate that bacteria levels increased with increasing residential development even if many of the septic systems were replaced by a community wastewater treatment system. Computed annual export rates for ammonia nitrogen (NH3-N) were correlated to the percentage of impervious surfaces in the watersheds, while the rates for other nitrogen forms, total phosphorus, and total suspended sediment were not. Annual export rates from the two mostly undeveloped watersheds were greater than a compilation of rates for undeveloped areas across the USA. Export from the four watersheds with more than 68 % residential land use was less than those reported from local and national studies of residential areas.  相似文献   

9.
The Reedy River in South Carolina is affected by the urban area of Greenville, the third most populous city in the state, and by the effluents from two large-scale municipal wastewater treatment plants (WWTPs) located on the river. Riverine water chemistry was characterized using grab samples collected annually under spring season baseflow conditions. During the 4-year time period associated with this study, climatic variations included two severe drought spring seasons (2001 and 2002), one above-normal precipitation spring season (2003), and one below-normal precipitation spring season (2004). The influence of drought and human activities on the baseflow chemistry of the river was evaluated by comparing concentrations of dissolved anions, total metals, and other important water chemistry parameters for these different years. Concentrations of copper and zinc, common non-point source contaminants related to urban activities, were not substantially elevated in the river within the urban area under baseflow conditions when compared with headwater and tributary samples. In contrast, nitrate concentrations increased from 1.2–1.6 mg/l up to 2.6–2.9 mg/l through the urban stream reach. Concentrations of other major anions (e.g., sulfate, nitrate) also increased along the reach, suggesting that the river receives continuous inputs of these species from within the urban area. The highest concentrations of major cations and anions typically were observed immediately downstream from the two WWTP effluent discharge locations. Attenuation of nitrate downstream from the WWTPs did not always track chloride changes, suggesting that nitrate concentrations were being controlled by biochemical processes in addition to physical processes. The relative trends in decreasing nitrate concentrations with downstream distance appeared to depend on drought versus non-drought conditions, with biological processes presumably serving as a more important control during non-drought spring seasons.  相似文献   

10.
Modelling can be a useful management tool because models allow the understanding of water body response to different pollution pressure scenarios which may help on the decision-making process and in prosecuting the Water Framework Directive objectives. This study aims to evaluate the usage of simple water quality models (Qual2Kw) applied to small river basins in order to better understand the response of a river to different loads of nitrogen and phosphorus. Qual2Kw model was applied to Cértima River (Portugal), a small river that ends in a shallow lake called Pateira Fermentelos and represents a very important ecosystem to the local community. Along its pathway, Cértima River has a significant enrichment in nutrients due to agriculture, livestock, domestic sewage and industrial effluents discharged into the river. In case of nitrogen, the highest loads are from domestic (44%) and diffuse (35%) sources. The main sources of phosphorous are domestic (46%), livestock (24%) and diffuse sources (20%). Cértima River is strongly enriched with nutrients, and neither nitrogen nor phosphorous is limiting the algal growth. According to the criterion of Dodds et al. (Water Res, 32(5):1455-1462, 1998), the river is classified as eutrophic. By comparing in stream measurements with Qual2Kw simulations, it can be concluded that it would be necessary to decrease the actual pollutants loads of nitrogen and phosphorous 5 and 10 times, respectively, in order to change Cértima River classification from eutrophic to mesotrophic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号