首页 | 本学科首页   官方微博 | 高级检索  
检索     
共有20条相似文献,以下是第1-20项 搜索用时 281 毫秒

1.  广安市大气污染源排放清单研究  
   陈东  陈军辉  何敏  王刚  龙启超《四川环境》,2019年第3期
   基于全面的实地调研,获取了广安市2016年各典型污染源的活动水平数据,以城市大气污染物排放清单编制技术手册为指导,采用排放因子法,建立了广安市2016年大气污染源排放清单,并分析了主要污染源排放特征。结果表明,2016年广安市SO_2、NO_X、CO、PM_(10)、PM_(2.5)、VOCs、NH_3总排放量分别为31 706 t、28 084 t、115 874 t、56 415 t、19 710 t、24 774 t以及39 484 t。SO_2排放主要来自工业源;NO_X排放主要来自工业源和移动源;CO排放主要来自工业源、民用燃烧源及移动源;PM_(10)和PM_(2.5)排放来自工业源、扬尘源和露天秸秆焚烧;VOCs主要来自工业源、移动源以及溶剂使用源;NH_3主要来自农业排放。    

2.  关中地区人为源大气污染物排放清单研究  
   王静晞  曹国良  韩蕾  胡渭平《安全与环境学报》,2015年第5期
   首次以关中地区为研究对象,通过收集各排放源的活动水平数据,选取国内外研究中的排放因子,采用排放因子法“自上而下”建立了2011年关中地区人为源大气污染物排放清单.结果表明:2011年关中地区人为源SO2、NOx、CO、PM10、VOCs、NH3的排放量分别为400.254×103 t、342.412×103 t、2 731.302×103 t、573.193×103 t、350.523×1 03 t、323.312×103t.其中渭南是SO2、NOx、CO的主要排放城市,西安是VOCs的主要排放城市,咸阳是NH3的主要排放城市,咸阳、铜川同为PM10的主要排放城市;SO2、NOx、CO的主要排放源为工业用煤炭燃烧,VOCs的主要排放源为炼焦、涂料等工业生产过程,PM10的主要排放源为农田秸秆燃烧,NH3的主要排放源为农业化肥施用.清单的不确定性来自活动水平数据的不完善及排放因子缺乏本地特征两方面.为提高清单的可信度,将研究结果与其他排放清单进行比较,结果表明差异度较小.    

3.  杭州市大气污染物排放清单及特征  被引次数:14
   叶贤满  徐昶  洪盛茂  焦荔  沈建东  张天  何曦《中国环境监测》,2015年第31卷第2期
   以杭州市区为研究区域,通过调查整合多套污染源数据库及其他统计资料,研究文献报道及模型计算的各种污染源排放因子,获得杭州市区各行业PM10、PM2.5、SO2、NOx、CO、VOCs、NH3等污染物的排放量,建立了杭州市区2010年1 km×1 km大气污染物排放清单。结果表明,2010年杭州市区PM10、PM2.5、SO2、NOx、CO、VOCs和NH3的排放总量分别为7.96×104、4.02×104、7.23×104、8.98×104、73.90×104、39.56×104、3.32×104t。从排放源的行业分布来看,机动车尾气排放是杭州市区大气污染物最重要排放源之一,对PM10、PM2.5、NOx、CO和VOCs的贡献分别达到14.4%、27.1%、40.3%、21.4%、31.1%。道路扬尘、电厂锅炉、工业炉窑、植被、畜禽养殖对不同污染物分别有着重要贡献,道路扬尘对PM10和PM2.5的贡献分别为44.6%和20.0%、电厂锅炉对SO2和NOx的贡献分别为37.0%和25.7%、工业炉窑对CO的贡献为41.5%、植被排放对VOCs的贡献为27.1%、畜禽养殖对NH3的贡献为76.5%。从空间分布来看,萧山区和余杭区对SO2、NH3和植被排放BVOC的贡献要显著高于主城区;而主城区机动车对PM2.5、NOx和VOCs的贡献分别达到36.3%、56.0%和47.4%,较市区范围内显著增加,表明机动车尾气排放已成为杭州主城区大气污染最重要的来源之一。    

4.  广西工业源大气污染物排放清单及空间分布特征研究  
   刘慧琳  陈志明  莫招育  李宏姣  黄炯丽  梁桂云  杨静  杨俊超  张达标  陈小敏  杨佳《环境科学学报》,2019年第39卷第1期
   大气污染物排放清单是了解区域污染物排放特征的重要资料,而工业源是大气污染的重点排放源.研究根据收集的工业企业活动水平数据,选择合理的计算方法和排放因子,建立了广西2016年工业源大气污染物排放清单.结果表明,2016年广西工业源SO_2、NO_x、CO、PM_(10)、PM_(2.5)、VOCs排放总量分别为20.7×10~4、21.6×10~4、147.5×10~4、48.4×10~4、25.7×10~4、34.7×10~4 t.其中,电厂和非金属矿物制品业对SO_2、NO_x、PM_(2.5)和VOCs的贡献最高.除此之外,黑色金属冶炼是SO_2、NO_x和PM_(2.5)的主要贡献源;有色金属冶炼是PM_(2.5)的主要贡献源;农副食品加工业是VOCs的主要贡献源.根据排放源污染物排放量及地理坐标信息,建立了污染物排放量空间分布特征图.结果显示,广西工业企业SO_2和NO_x排放主要集中在百色、柳州、防城港和贵港市;颗粒物排放主要集中在贵港、柳州和百色市;VOCs排放主要集中在柳州、贵港和崇左市.研究建立的排放源清单结果具有一定的不确定性,建议进一步完善基础研究.    

5.  海峡西岸经济区大气污染物排放清单的初步估算  被引次数:3
   鲁斯唯  胡清华  吴水平  王新红  陈晓秋《环境科学学报》,2014年第34卷第10期
   以2009年为基准年,结合污染源普查数据、统计年鉴及工业活动、居民生活等多个方面对海峡西岸经济区包括SO2、NOx、PM2.5、VOCs和NH3在内的大气污染物的排放量进行了估算,建立了海西区大气污染物排放清单.结果发现,上述5类污染物基准年的排放量分别为40.67×104、55.84×104、50.57×104、152.26×104和26.18×104t.其中,SO2、NOx及PM2.5的排放主要来自电厂,占排放总量的比例分别为25.58%、34.89%和38.75%;VOCs和NH3的主要排放源分别来自植被排放和养殖业,其贡献量分别为49.12%和47.07%.采用GIS对排放清单进行网格化处理,得出SO2、NOx及PM2.5的高排放强度区域与固定源的空间分布较为一致.此外,结合国家和地方"十二五"发展规划,采用情景分析方法估算了2015年海西区大气污染物的排放清单.与基准年相比,SO2、NOx和NH3的排放量呈下降趋势,PM2.5和VOCs的排放量呈大幅度增加.基准年排放清单的不确定性分析显示,VOCs排放估算的不确定度最大,为225%.    

6.  长沙市空气自动站周边区域大气污染物排放源清单  
   张青梅  刘湛  罗达通  罗华飞  李贝睿  付广义《中国环境管理》,2018年第10卷第3期
   以长沙市空气自动站周边3 km为研究对象,基于统计年鉴和实地调查,获得了该地区2015年储存运输源、废弃物处理源、工艺过程源、化石燃料固定燃烧源、农业源、生物质燃烧源、扬尘源、移动源8个源类的活动水平数据。以大气污染物排放源清单编制技术指南为依据,建立了2015年长沙市空气自动站周边3 km区域NH_3、NO_x、PM_(10)、PM_(2.5)、SO_2、VOCs等6项污染物的源排放清单。结果表明,2015年长沙空气自动站周边3 km内,8类大气污染源排放的NH_3、NO_x、PM_(2.5)、PM_(10)、SO_2、VOCs总量分别为53.65t、4 899.35t、1 846.09t、6 257.75t、989.49t、4 383.31t。NH_3、NO_x、PM_(2.5)、PM_(10)、SO_2、VOCs排放量最大的源分别是农业源、移动源、扬尘源、扬尘源、化石燃料固定燃烧源和移动源,贡献率分别为98.45%、84.24%、60.82%、85.90%、97.33%、49.88%。优化道路交通、减少燃煤、减少建筑工地扬尘排放可促进长沙市空气自动站周边空气质量改善。    

7.  三明市大气污染物排放特征研究  
   项雅静  王珊珊  邵玉海  李金泰  周斌《环境污染与防治》,2019年第8期
   通过实地调查和统计获得区县尺度排放源活动水平数据,采用物料衡算法和排放因子法,估算三明市2015年大气污染物排放清单,选取经纬度坐标、路网、土地类型和人口等数据作为权重因子,利用地理信息系统(GIS)技术建立1km×1km高精度网格,分析各类排放源污染排放的数值和空间特征。结果显示,2015年三明市SO_2、NO_x、挥发性有机物(VOCs)、PM_(10)、PM_(2.5)和NH_3的排放总量分别为5.22×10~4、5.80×10~4、1.88×10~5、7.92×10~4、3.23×10~4、2.26×10~4 t。污染贡献方面:工业源是SO_2的排放主要来源;NO_x的主要排放源为工业源和移动源;天然源对VOCs排放有显著贡献;工业源和扬尘源是PM_(10)和PM_(2.5)的主要贡献源;NH_3排放主要来自农业源。空间分布方面:SO_2、NO_x、PM_(2.5)和PM_(10)的排放主要集中在城镇化程度高的永安市和梅列区,VOCs与NH_3排放则与植被分布和农业生产水平密切相关。与2007年和2009年三明市的排放清单对比,发现工业排放控制政策及秸秆禁烧令的实施对PM_(2.5)、PM_(10)和VOCs的减排有明显效果。    

8.  长江三角洲地区人为源大气污染物排放特征研究  被引次数:20
   黄成  陈长虹  李莉  程真  王红丽  王杨君  黄海英  张钢锋  陈宜然《环境科学学报》,2011年第31卷第9期
   在收集整理长江三角洲地区(简称"长三角")各城市人为大气污染源资料的基础上,采用以"自下而上"为主的方法建立了2007年长三角地区人为源大气污染物排放清单.清单结果显示,2007年长三角地区的SO2、NOx、CO、PM10、PM2.5、VOCs和NH3等大气污染物排放总量分别达到2391.8、2292.9、6697.1、3115.7、1510.8、2767.4和458.9kt,单位面积污染物排放强度略高于珠三角地区.电厂和其他工业燃烧设施分别贡献了约46%和45%的SO2排放,以及59%和26%左右的NOx排放.电厂及水泥建材+钢铁冶金等工艺过程贡献了约21%和57%的PM10排放,以及28%和52%的PM2.5排放.石油加工、化工制造和工业喷涂等工艺过程的VOCs无组织排放占到总量的65%.NH3的主要排放源来自畜禽养殖和氮肥施用等农业部门,分别占到总量的48%和40%.长三角地区大气污染物的空间分布结果显示,长三角高排放地区主要集中在长江下游的沿江一带及杭州湾地区一带.现有方法测算的PM10、PM2.5、VOCs和NH3排放结果仍存在较大的不确定性,建议在未来不断加强本地大气污染源排放的基础研究,以进一步改善我国各典型区域的大气污染物排放清单,为区域大气污染联防联控提供重要的科研基础.    

9.  四川省人为源大气污染物排放清单及特征  
   周子航  邓也  谭钦文  吴柯颖  杨欣悦  周小玲《环境科学》,2018年第39卷第12期
   在收集四川省各城市人为污染源活动水平数据基础上,基于自下而上和自上而下结合的清单构建方法,选取排放因子并结合GIS技术,建立了该地区2015年1 km×1 km人为源大气污染物排放清单。清单结果表明,2015年四川省人为源SO2、NOx、CO、PM10、PM2.5、BC、OC、VOCs和NH3排放量分别为444.9×103、820.0×103、3773.1×103、1371.6×103、537.5×103、28.7×103、53.1×103、923.6×103和988.0×103 t。电厂和工业锅炉等燃煤排放贡献了95%以上的SO2,移动源、化石燃料燃烧源和工艺过程源分别贡献了54%、23%和20%的NOx,以钢铁和建材制造为主的工艺过程源分别贡献了20%的PM10和34%的PM2.5,以道路扬尘为主的扬尘源分别贡献了60%的PM10和35%的PM2.5,生物质燃烧分别贡献了33%的BC和51%的OC,以机械加工、建筑装饰、电子设备制造、印刷和家具等为行业为主的溶剂使用源贡献了46%的VOCs,NH3主要来自畜禽养殖和氮肥施用等农业部门排放,分别占总排放量的70%和25%。污染物空间分布结果显示,四川省各项大气污染物主要集中分布于人口最为密集,农业和工业均较为发达的四川盆地和攀枝花部分区域,其中,以成都、德阳和绵阳为代表的成都平原城市群为四川盆地内的主要排放高值区域。所建立的排放清单存在一定不确定性,后续研究中应针对活动水平数据获取的不足开展数据收集工作,加强排放贡献较大典型污染源的排放因子本地化研究工作,逐步完善四川省大气污染物排放清单,为四川省复合型大气污染研究和防治提供科学支撑。    

10.  海峡西岸地区人为源大气污染物排放特征研究  被引次数:3
   黄成《环境科学学报》,2012年第32卷第8期
   采用以"自下而上"为主的方法建立了2007年海峡西岸地区的人为源大气污染物排放清单.计算结果显示,海西地区人为源SO2、NOx、CO、PM10、PM2.5、VOCs和NH3排放总量分别为69.5×104、96.1×104、413.1×104、93.9×104、40.6×104、85.0×104和28.5×104t.电厂和工业燃烧设施分别占SO2排放的48%和39%,以及NOx排放的51%和25%.水泥、砖瓦等制造过程贡献了约51%的PM10排放和36%的PM2.5排放.秸秆燃烧、加油站和涂料等VOCs面源分别占到其排放总量的27%、15%和4%.NH3的主要排放源为畜禽养殖和氮肥施用等农业部门,占到总排放量的89%.海西地区的单位面积大气污染物排放量仅相当于长三角地区的25%左右,略高于全国平均水平.该地区人为源和天然源VOCs排放比重分别占56%和44%,人为源VOCs排放比重低于全国大部分地区.海西大气污染高排放地区主要集中在沿海一带,以泉州、潮汕、福州和温州等地区为主,建议"十二五"发展过程中,重点关注上述高排放地区,限制重点排放源的发展,开发低耗能、低污染的发展模式.    

11.  南充市移动源污染物排放清单特征分析  
   张自全  胡健  余世东  罗彬  舒丽  田静《四川环境》,2018年第4期
   基于2014年南充市大气污染源排放清单调查,通过实地调研、现场测试与统计年鉴等获得活动水平数据,采用排放系数法估算建立排放清单。结果表明道路机动车保有量为877 197辆,摩托车、载客汽车、载货汽车占比分别为61.8%、29.9%、8.3%。道路移动源CO 39 631.2t,NO_X26 448t、VOCs 20 544t、HC 3 648t、PM101 777t、PM_(2.5)1 600t、SO2391.7t,主要污染物为CO、NO_X和VOCs。柴油重型载货汽车、柴油轻型载货汽车、柴油大型载客汽车是NO_X、SO2、PM10和PM_(2.5)主要排放源,普通摩托车、其他燃料小型载客汽车是CO、VOCs主要排放源。普通摩托车和汽油中型载货汽车是HC主要排放源。非道路移动源污染物总量NO_X2 322t,CO 1 173t,HC 657.2t、PM 467.7t、PM_(2.5)252.9t、VOCs 179.8t。农业机械对CO、PM_(2.5)、PM、THC排放贡献率高,分别为49.5%、50.2%、48.3%、30.0%;工程机械对NO_X、PM_(2.5)、PM、THC的贡献率高,分别为51.4%、40.3%、38.9%、39.3%;船舶对VOCS排放贡献为90.3%。顺庆、高坪、嘉陵的CO、NO_X、THC、PM排放贡献率较高,蓬安VOCS排放贡献率较高。    

12.  珠江三角洲大气排放源清单与时空分配模型建立  
   杨柳林  曾武涛  张永波  刘乙敏  廖程浩  甘云霞  邓雪娇《中国环境科学》,2015年第35卷第12期
   收集整理2012年珠江三角洲地区(简称“珠江三角洲”)各种大气人为源及天然源基础活动数据,以排放因子法“自下而上”为主计算多污染物排放量,并建立本地化污染物空间分配方案及基于行业排污特征的时间分配谱,构建了具备时空分布属性的区域性网格化大气源排放清单.清单结果显示,2012年珠江三角洲SO2、NOx、CO、PM10、PM2.5、VOCs和NH3排放总量分别为55.2万t、102.9万t、349.2万t、95.2万t、38.5万t、153.9万t和17.7万t. 固定燃烧源是珠江三角洲SO2和NOx的最大排放贡献源,其中电厂和锅炉分别贡献了35.0%和41.8%的SO2排放,以及28.2%和16.2%的NOx排放;VOCs的最大贡献源是过程源,其中家具制造、石油精炼、油气码头排放量总和占比为52.4%;扬尘源是颗粒物的主要来源之一,对PM2.5的排放贡献达42.3%;NH3的主要排放源为畜禽养殖和化肥施用源,两者排放量占比分别为50.7%和26.8%.珠江三角洲大气污染物空间与时间分布结果显示,高排放污染源主要集中于“东莞-广州-佛山”一带,呈半环带状结构分布;白天时段(9:00~20:00)的排放强度明显高于夜晚时段(21:00~次日8:00);夏秋季节(4~10月)的排放强度略高于冬春季节(11月~次年3月).    

13.  常州市工业大气污染物排放特征研究  
   程钟《中国环境监测》,2016年第32卷第4期
   通过调查企业生产情况,采用现场实测、模型、排放因子等方法,获得了常州市工业大气污染物的排放量,从行业、排放口高度、空间、时间及重点源所占比例等方面,分析了常州市工业大气污染物的分布特征。结果显示:常州市工业PM、PM10、PM2.5、SO2、NOx、CO、NH3、VOCs排放量分别为3.089、1.348、0.695、5.380、7.077、14.459、0.030、0.848万t;钢铁、水泥、热电、金属制品、化工是常州市大气污染物产生的主要行业;高架源、中架源、低架源排放比例依次增加;11.5%的企业占据了全市排放量的86%以上;SO2等污染物各月排放量基本稳定, PM2.5等上半年排放量波动较大;市区企业的集中排放在不利气象条件下易造成大气污染。    

14.  天津市北辰区大气污染物小尺度精细化源排放清单  
   张骥  徐媛  刘茂辉  展先辉  郭金龙  孙猛《中国环境监测》,2018年第34卷第2期
   以天津市北辰区空气站周边3 km为研究对象,基于拉网式实地调查,获得该地区2016年各类典型行业污染源详细的活动水平数据,以环境保护部发布的"清单编制技术指南"为参考,建立了2016年天津市北辰区空气站周边3 km大气污染源排放清单。结果表明:2016年天津市北辰区空气站周边3 km大气污染源的排放总量PM_(10)为431.28 t、PM_(2.5)为147.94 t、SO_2为48.67 t、CO为1 395.39 t、NO_x为469.52 t、VOCs为305.66 t;PM_(10)和PM_(2.5)的最大排放源是工地,贡献率分别为25.49%、15.16%;SO_2的最大排放源是散煤,贡献率为49.36%;CO和NO_x的最大排放源是道路机动车,贡献率分别为45.85%、53.89%;VOCs的最大排放源是制造业企业,贡献率为48.80%。天津市北辰区改善空气质量应从控煤、控尘、控车3个方面入手。    

15.  天津市大气污染源排放清单的建立  被引次数:29
   赵斌  马建中《环境科学学报》,2008年第28卷第2期
   通过调研天津市工、农业生产和居民生活的统计资料,研究分析文献报道的各种污染源排放因子,计算出天津市各行业、各区县NOx、SO2、NMVOC、CO、NH3、PM10、PM2.5等污染物的排放量,发展了天津市2003年排放源清单.结果显示,天津市2003年各类污染物质的排放量NOx为1.77×105t,SO2为2.59 ×105t,NMVOC为2.24×105t,CO为1.33×106t,NH3为7.40×104t,PM10为2.52×105t,PM2.5为1.10×105t.从排放源的行业分布来看,燃煤源、汽车移动源、秸秆燃烧源是天津市大气污染物的重要排放源,燃煤源对各污染物的贡献分别为NOx46%,SO284%,NMVOC 1%,CO 58%,PM1018%,PM2.5 24%.火电、水泥、钢铁、炼焦、原油加工等行业依然是重要的工业污染排放源,火电对SO2的贡献为13%,钢铁对SO2的贡献为24%,对CO的贡献为30%.2003年天津市区对NO,、S02、NMVOC、CO等污染物的贡献均高于其它区县,对PM10、PM2.5的贡献也很高;塘沽区对NOx、SO2、NMVOC、CO等污染物的贡献很大,蓟县、武清区、宝坻区对NH3、PM10、PM2.5的贡献很大.    

16.  基于本地污染源调查的杭州市大气污染物排放清单研究  
   杨强  黄成  卢滨  井宝莉  夏阳  唐伟  卢清  鲁君  徐昶  顾震宇《环境科学学报》,2017年第37卷第9期
   基于实地调查数据并辅以统计数据,采用物料衡算法和排放因子法,估算了杭州市2015年大气污染物排放清单,并选取经纬度坐标、路网、航道、土地类型和人口等数据作为权重因子,研究了该地区各类排放源污染物排放空间分布特征.结果表明,杭州市2015年SO2、NOx、CO、VOCs、PM10、PM2.5和NH3年排放总量分别为22.20×103、108.17×103、192.10×103、134.94×103、78.12×103、27.65×103和59.75×103 t.工业源是杭州市SO2排放的主要来源,移动源对NOx和CO的排放贡献最为显著,扬尘源是杭州市PM10和PM2.5排放的最主要来源,其次为工业源;VOCs排放的主要来源依次为工业源、天然源和移动源;NH3排放主要来自农业源.从空间分布来看,排放主要集中在中心城区及其周边的萧山、下沙、大江东、余杭和富阳等工业企业相对密集的区域.本研究建立的排放清单在污染源覆盖范围和排放因子方面仍然存在一定的不确定性,建议在后续研究中重点开展低、小、散企业及本地化排放因子调查研究工作,进一步提升大气污染物排放清单的准确度.    

17.  广东省非道路移动机械排放清单及不确定性研究  
   卞雅慧  范小莉  李成  叶潇  王肖丽  黄志炯  郑君瑜《环境科学学报》,2018年第38卷第6期
   随着工业源和机动车等重点污染源减排空间的下降,非道路移动机械排放已成为大气污染防治领域的研究热点之一.本研究通过资料收集与实地调研,初步构建了广东省非道路机械基于机型的活动水平数据集、综合排放因子及时空分配因子,采用自下而上的排放因子法,建立了广东省2014年非道路移动机械排放清单.并利用蒙特卡洛方法定量评估清单结果不确定性.结果表明,广东省2014年非道路移动机械的SO_2、NO_x、PM_(10)、PM_(2.5)、VOCs和CO排放总量分别为4.9、61.1、4.8、4.5、11.6 kt和45.1 kt.其中,农业机械排放以四轮农用运输车和小型拖拉机为主,贡献率分别为38.4%和18.0%,主要分布在非珠三角的农村地区;工程机械排放以建筑运输车和挖掘机为主,贡献率分别为40.1%和33.9%,主要分布在珠三角地区.此外,不确定性分析结果显示VOCs和PM_(2.5)排放结果不确定性较大,不确定性范围分别为-25.2%~41.7%和-23.4%~32.8%.NO_x不确定性较小,不确定性范围为-15.2%~17.5%.    

18.  我国大气颗粒物来源及特征分析  被引次数:16
   胡敏  唐倩  彭剑飞  王锷一  王淑兰  柴发合《环境与可持续发展》,2011年第36卷第5期
   我国大气颗粒物来源复杂,呈现大气复合型污染特征,对主要污染源进行识别和定量,是制定城市空气质量改善措施的基础。本研究总结了2000年以来我国近30个城市大气可吸入颗粒物PM10源解析研究,结果表明我国大气颗粒物PM10主要来自六类源:扬尘(土壤尘、道路尘、建筑尘);燃煤;工业排放;机动车排放;生物质燃烧;SO2、NOx、VOCs氧化产生的二次颗粒物。研究还表明,不同地区不同季节大气颗粒物主要来源和相对贡献存在差异。近年来随着大气颗粒物控制措施的实施,城市PM10污染状况已明显改善,大气细颗粒物PM2.5越来越受关注,在制定空气质量达标方案时,各类燃烧源和二次颗粒物的重要性将进一步上升。    

19.  辽宁省人为源大气污染物排放清单及特征研究  
   袁梦晨  祖彪  张青新  刘鹏辉  赵瑜《环境科学学报》,2018年第38卷第4期
   为全面评估辽宁省关键大气污染物排放状况,系统收集和整理全省基础活动水平信息,采用排放因子法建立了该省2012年人为源大气污染物排放清单.结果显示,2012年辽宁省SO_2、NO_x、CO、PM10、PM_(2.5)、BC、OC及NH_3排放总量分别为1434.8×10~3、1632.3×10~3、6682.9×10~3、1529.9×10~3、1087.8×10~3、74.5×10~3、176.1×10~3t及880.4×10~3t.BC和OC最大贡献源为生物质燃烧源,排放集中分布在辽宁中、西部;NH_3主要来自畜禽养殖与化肥施用,排放高值区位于辽宁中部农业畜牧业发达地区;其他污染物主要来自固定燃烧源和工艺过程源,集中分布在辽宁中部城市群以及大连金州区、甘井子区和普兰店区.大连、沈阳是SO_2、NO_x、NH_3和颗粒物主要排放城市,鞍山和本溪由于钢铁行业发达,成为CO排放量最大的城市.基于卫星观测获得的NO_2垂直柱浓度对NO_x排放空间分布进行评估,两者相关性系数为0.57(p0.01).辽宁省级排放清单与国家尺度排放清单在一定程度存在差异,主要原因在于采用的活动水平和污染物控制效率的不同,基于详细本地化污染源信息建立的省级排放清单可以较好地反映实际情况.建议完善点源排放特征信息并加强本地化测试,进一步降低省级排放清单不确定性.    

20.  基于达标约束的南京市环境空气质量情景模拟  
   谢放尖  史之浩  李婧祎  郑新梅  胡建林  刘春蕾  杨峰《环境科学》,2019年第40卷第7期
   以2030年南京市6项污染物达标为约束,在2015年大气污染物排放清单基础上,利用CMAQ模型分析了PM_(2.5)对南京本地不同前体物排放的敏感性,通过情景分析预测排放清单,模拟了4种减排情景的空气质量变化,最终获得达标约束下大气污染物总量控制指标.模拟结果显示,减少一次颗粒物PPM (primary particulate matter)排放对降低大气中的PM_(2.5)浓度最为有效;在周边地区减排的基础上,本地减少PPM排放对PM_(2.5)年均浓度下降的相对贡献可达88%,其次为NH_3、NOx、SO_2与VOCs减排,其相对贡献分别为10. 3%、5. 5%、3. 2%与0. 5%;相比2015年,4种情景下南京市主要大气污染物减排比例在22%~53%,未来控制活动水平对减排SO_2、NH_3与CO较有效,而NOx和VOCs末端治理方面还有较大空间;将SO_2、NOx、PM10、PM_(2.5)、BC、OC、CO、VOCs及NH_3的排放量分别控制在2. 43×104、8. 47×10~4、9. 42×10~4、3. 74×10~4、0. 19×10~4、0. 30×10~4、26. 56×10~4、13. 08×10~4及1. 50×10~4t以内时,预计南京市6项污染指标可以达到国家环境空气质量二级标准.    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号