首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
Wetland loss has been the major environmental problem in Sanjiang Plain, NE China in recent years because of the dramatic agricultural development. We determined the spatial associations of the wetland loss rates in an 11,000-km2 study area for two intervals of period 1 (1975–1989) and period 2 (1989–2004) spanning 30 years by using geographic information systems. The landscape of this area was simple with five categories, composed of ten types, and including three natural wetland types—open water, marsh, and wet meadow. Extensive agriculture was the principal cultivation form in terms of large size farm units in the area. Agriculture has become the principal land use category replacing natural wetlands over the 30-year period. It has changed the whole landscape of the region and the landscape pattern, causing wetland loss and fragmentation. The wetland loss rate of the area was very different between the two intervals, while wetland loss was not uniform throughout the region and was influenced by the landscape characteristics, such as topography, geomorphology, and the location of the wetlands in the watershed. Despite the remarkable land use changes, the wetlands distribution in the landscapes was similar compared to their original pattern. These results indicated that agricultural development affected the areas more than the distribution pattern of the wetlands in this region.  相似文献   

2.
通过对兵团土地利用空间格局变化分析,选择合适的土地利用政策保护生态环境。运用RS和GIS技术对兵团近10年土地利用/覆被变化及景观格局空间变化进行分析,并在此基础上运用Markov模型对未来30年土地利用变化进行预测。2000—2010年,新疆生产建设兵团景观多样性升高,连通性增强,形状愈来愈简单,景观格局整体变化不大;草地、灌丛、湿地、荒漠和冰川/永久积雪面积减少,耕地和城镇面积增加,森林保持稳定;人为干扰对土地利用结构的变化具有重要作用,土地利用强度受人为活动影响的同时受土地利用政策影响;在未来30年间耕地和城镇面积继续增加,除森林基本保持不变外其他土地利用类型均减小。兵团城镇用地与草地和耕地之间的矛盾逐渐显现,势必引起兵团生态格局的变化。因此,必须实行合适的土地利用政策保护环境。  相似文献   

3.
以我国干旱区典型内陆湖泊流域——新疆艾比湖流域为研究区,对其平原区1990--2005年的景观格局动态变化特征进行了研究。结果表明,1990--2005年,研究区农田、湿地及人居地景观的面积增加,其中以农田景观的面积增加量最大;而林地、草地、沙地、戈壁和盐碱地景观的面积呈减少趋势,其中草地、盐碱地和林地景观面积减少较多;各景观类型中以盐碱地、林地、草地和戈壁的转出率较高,而以农田、人居地的转入率较高;研究区景观组份构成没有大的变化,戈壁依然是研究区景观的基质。景观格局变化对区域生态环境的影响主要表现为:农田斑块数量和面积的增加,加大了区域水资源利用压力;林地、草地斑块面积减少,使得平原区绿洲遭受风沙的危害性增大;沙地、戈壁和盐碱地面积减少,使绿洲不同区域生态环境呈现不同变化特征;湿地斑块面积略有增加,对减少艾比湖流域沙尘危害较为有利。  相似文献   

4.
This study evaluated the link between watershed activities and salt marsh structure, function, and condition using spatial emergy flow density (areal empower density) in the watershed and field data from 10 tidal salt marshes in Narragansett Bay, RI, USA. The field-collected data were obtained during several years of vegetation, invertebrate, soil, and water quality sampling. The use of emergy as an accounting mechanism allowed disparate factors (e.g., the amount of building construction and the consumption of electricity) to be combined into a single landscape index while retaining a uniform quantitative definition of the intensity of landscape development. It expanded upon typical land use percentage studies by weighting each category for the intensity of development. At the RI salt marsh sites, an impact index (watershed emergy flow normalized for marsh area) showed significant correlations with mudflat infauna species richness, mussel density, plant species richness, the extent and density of dominant plant species, and denitrification potential within the high salt marsh. Over the 4-year period examined, a loading index (watershed emergy flow normalized for watershed area) showed significant correlations with nitrite and nitrate concentrations, as well as with the nitrogen to phosphorus ratios in stream discharge into the marshes. Both the emergy impact and loading indices were significantly correlated with a salt marsh condition index derived from intensive field-based assessments. Comparison of the emergy indices to calculated nitrogen loading estimates for each watershed also produced significant positive correlations. These results suggest that watershed emergy flow is a robust index of human disturbance and a potential tool for rapid assessment of coastal wetland condition.  相似文献   

5.
应用2007—2017年期间4个时间点的遥感影像数据,选取典型景观格局指数,对三亚市的景观空间格局动态特征进行分析,探求其驱动因素。研究表明:近十年来,三亚市内同种土地利用类型的空间聚集程度降低,空间分布逐渐趋向于分散,不同类型的土地之间相互融合度较高,形状趋于复杂化,景观类型分布趋势呈均衡化,景观的破碎化程度加强,景观复杂程度增高,土地利用的丰富程度逐渐加强。通过驱动因素分析,国家政策的导向、城市总体规划的实施、产业结构调整及自然环境的变化是影响三亚城市景观空间格局变化的主要驱动因素。  相似文献   

6.
Human modification of land use and land cover change (LUCC) drives the change of landscape patterns and limits the availability of products and services for human and livestock. LUCC can undermine environmental health. Thus, this study aimed to develop an understanding of LUCC in the Yanqi Basin, Xinjiang, China, an arid area experiencing dramatic water and land resource use. A time series of satellite images (1964, 1973, 1989, 1999, and 2009) were used to calculate the index of landscape patterns to study the processes involved in changes to land uses and landscape patterns and the influence of this changes on landscape patterns. The results show that land uses in the Yanqi Basin have changed dramatically since 1964 with grassland being mainly converted to cropland. Landscape fragmentation and diversity have decreased in the study area, although landscape fragmentation increased from 1964 to 1999 and then decreased by 2009. The index of landscape diversity decreased from 1.64 in 1964 to 0.71 in 2009. The heterogeneity and complexity of the landscape increased during this period. In contrast, the index of dominance decreased from 0.85 in 1964 to 0.83 in 2009. Land use change drives landscape patterns of the development of the watershed toward diversity and a fragmented structure. Population growth, economic development, and industrial policies were the dominant driving forces behind LUCC in the Yanqi Basin. Sustainable use of land resources is a significant factor in maintaining economic development and environmental protection in this arid inland river basin.  相似文献   

7.
Soil management significantly affects the soil labile organic factors. Understanding carbon and nitrogen dynamics is extremely helpful in conducting research on active carbon and nitrogen components for different kinds of soil management. In this paper, we examined the changes in microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), dissolved organic carbon (DOC), and dissolved organic nitrogen (DON) to assess the effect and mechanisms of land types, organic input, soil respiration, microbial species, and vegetation recovery under Deyeuxia angustifolia freshwater marshes (DAMs) and recovered freshwater marsh (RFM) in the Sanjiang Plain, Northeast China. Identifying the relationship among the dynamics of labile carbon, nitrogen, and soil qualification mechanism using different land management practices is therefore important. Cultivation and land use affect intensely the DOC, DON, MBC, and MBN in the soil. After DAM soil tillage, the DOC, DON, MBC, and MBN at the surface of the agricultural soil layer declined significantly. In contrast, their recovery was significant in the RFM surface soil. A long time was needed for the concentration of cultivated soil total organic carbon and total nitrogen to be restored to the wetland level. The labile carbon and nitrogen fractions can reach a level similar to that of the wetland within a short time. Typical wetland ecosystem signs, such as vegetation, microbes, and animals, can be recovered by soil labile carbon and nitrogen fraction restoration. In this paper, the D. angustifolia biomass attained natural wetland level after 8 years, indicating that wetland soil labile fractions can support wetland eco-function in a short period of time (4 to 8 years) for reconstructed wetland under suitable environmental conditions.  相似文献   

8.
The availability of Landsat data allows improving the monitoring and assessment of large-scale areas with land cover changes in rapid developing regions. Thus, we pretend to show a combined methodology to assess land cover changes (LCCs) in the Hamoun Wetland region (Iran) over a period of 30-year (1987–2016) and to quantify seasonal and decadal landscape and land use variabilities. Using the pixel-based change detection (PBCD) and the post-classification comparison (PCC), four land cover classes were compared among spring, summer, and fall seasons. Our findings showed for the water class a higher correlation between spring and summer (R2?=?0.94) than fall and spring (R2?=?0.58) seasons. Before 2000, ~?50% of the total area was covered by bare soil and 40% by water. However, after 2000, more than 70% of wetland was transformed into bare soils. The results of the long-term monitoring period showed that fall season was the most representative time to show the inter-annual variability of LCCs monitoring and the least affected by seasonal-scale climatic variations. In the Hamoun Wetland region, land cover was highly controlled by changes in surface water, which in turn responded to both climatic and anthropogenic impacts. We were able to divide the water budget monitoring into three different ecological regimes: (1) a period of high water level, which sustained healthy extensive plant life, and approximately 40% of the total surface water was retained until the end of the hydrological year; (2) a period of drought during high evaporation rates was observed, and a mean wetland surface of about 85% was characterized by bare land; and (3) a recovery period in which water levels were overall rising, but they are not maintained from year to year. After a spring flood, in 2006 and 2013, grassland reached the highest extensions, covering till more than 20% of the region, and the dynamics of the ecosystem were affected by the differences in moisture. The Hamoun wetland region served as an important example and demonstration of the feedbacks between land cover and land uses, particularly as pertaining to water resources available to a rapidly expanding population.  相似文献   

9.
平顶山地区景观格局动态特征及驱动力分析   总被引:1,自引:0,他引:1  
以平顶山地区为研究对象,利用平顶山地区1992年Landsat-TM影像和2006年中巴资源卫星遥感影像,运用景观生态学原理,借助遥感和GIS技术,选取景观多样性、景观优势度、景观均匀度、景观破碎度等指标指数进行分析,揭示平顶山地区近14 a来城市景观格局演变及其驱动力。研究结果表明:交通用地、工矿及居民点和耕地用地显著增加,林地、水域显著减少;除工矿及居民点外,该地区各类型斑块数量均有增加,其中林地增加最为显著;交通用地、工矿及居民点的破碎度降低,水域、林地、耕地的景观类型破碎度增高;耕地的分维数、形状指数呈下降趋势,而林地的分维数和形状指数呈上升趋势;平顶山地区景观多样性和均匀度都呈下降趋势,而优势度和破碎度增加;景观格局变化受人为因素影响较大,人口增加、经济发展、城镇化和工业发展是平顶山地区景观格局演变的主要驱动力。  相似文献   

10.
This paper quantifies the allocation of ecosystem services value (ESV) associated with land use pattern and qualitatively examined impacts of land use changes and socio-economic factors on spatiotemporal variation of ESV in the Natural Wetland Distribution Area (NWDA), Fuzhou city, China. The results showed that total ESV of the study area decreased from 4,332.16?×?106 RMB Yuan in 1989 to 3,697.42?×?106 RMB Yuan in 2009, mainly due to the remarkable decreases in cropland (decreased by 55.3 %) and wetland (decreased by 74.2 %). Forest, water, and wetland played major roles in providing ecosystem services, accounting for over 90 % of the total ESV. Based on time series Landsat TM/ETM+ imagery, geographic information system, and historical data, analysis of the spatiotemporal variation of ESV from 1989 to 2009 was performed. It indicated that rapid expansion of urban areas along the Minjiang River resulted in significant changes in land use types, leading to a dramatic decline in ecosystem services. Meanwhile, because of land scarcity and unique ecosystem functions, the emergency of wetland and cropland protection in built-up area has become an urgent task of local authorities to the local government. Furthermore, there was still a significant negative correlation between ESV of cropland and wetland and the GDP. The results suggest that future planning of land use pattern should control encroachment of urban areas into cropland and wetland in addition to scientific and rational policies towards minimizing the adverse effects of urbanization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号