首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用重组双杂交酵母快速检测技术分析了东江下游两个污水厂、8个工业废水排放口和6条受纳河流水体共16个样品中的雌激素效应物质浓度,并按照雌二醇当量(EEQ)计算了水中雌激素效应水平。在被检测废水样品中,排水的EEQ值处于0.3~2.8ng/L之间,其中造纸厂与纸制品厂排水具有明显雌激素效应。采自河涌的6个样品有4个样品检出雌激素活性,雌激素效应水平在1.9~8.8ng EEQ/L之间。结果表明,东江下游行业废水处理厂出水中的EEQ浓度应与河涌水体中的EEQ在相同数量级, 与国内报道的其他地区河流及工厂排水污染水平类似。污染较为严重的河涌水体雌激素水平明显高于污水处理厂及工厂排水,推断污染河涌水体中的雌激素效应物质应来自未经处理的污染源。  相似文献   

2.
The occurrence and removal of eight endocrine disrupting compounds (EDCs), including estrone (E(1)), 17β-estradiol (E(2)), estriol (E(3)), 17α-ethinylestradiol (EE(2)), diethylstilbestrol (DES), bisphenol A (BPA), nonylphenol (NP) and octylphenol (OP), and their estrogenicities were investigated in a sewage treatment plant in Harbin city, China. The EDCs were extracted from wastewater samples by solid phase extraction (SPE) method and analyzed with gas chromatography coupled with mass spectrometry (GC-MS). The average concentrations in the influents and effluents ranged from 6.3 (EE(2)) to 1725.8 ng L(-1) (NP) and from 相似文献   

3.
Concentrations of six endocrine-disrupting compounds (EDCs), bisphenol A (BPA), estrone (E(1)), 17β-estradiol (E(2)), estriol (E(3)), 17α-ethynylestradiol (EE(2)) and diethylstilbestrol (DES), were assessed in influents, effluents and excess sludge in ten municipal wastewater treatment plants (WWTPs) in the Three Gorges Reservoir (TGR) area, Chongqing, China. Three types of activated sludge treatment processes, oxidation ditch (OD), reversed anaerobic-anoxic-oxic (rA(2)/O) technology and sequential batch reactor (SBR), were used in the surveyed WWTPs. These WWTPs were all combined landfill leachate-sewage treatment plants. All analytes were extracted by solid-phase extraction (SPE) in the dissolved phase and by accelerated solvent-based extraction (ASE) in sludge. Gas chromatography-mass spectrometry (GC-MS) was employed for the analysis of EDCs. Among these EDCs, BPA was the most frequently detected and abundant compound (100.0-10566.7 ng L(-1), 15.5-1210.7 ng L(-1) and 85.0-2470.4 ng g(-1) with respect to the influents, effluents and excess sludge samples). The greatest levels of steroidal estrogens in municipal influents were observed in E(3) which were all >100 ng L(-1), followed by E(1) (42.2-110.7 ng L(-1)) and E(2) (7.4-32.7 ng L(-1)), and in the effluents and sludge were E(1) > E(3) > E(2) which were all <31 ng L(-1) and 105 ng g(-1), respectively. Regarding synthetic estrogens, EE(2) was frequently detected in the influents, occurring below 50 ng L(-1), while DES was not detected at all. A high correlation coefficient was observed between the leachate-sludge ratio and concentrations of influent EDCs, and it was statistically significant (i.e., R > 0.65, P < 0.05), but removal efficiency of the EDCs did not show significant differences with OD, rA(2)/O and SBR processes. Furthermore, modification of treatment technology as well as operational parameters, such as hydraulic retention time (HRT), sludge retention time (SRT) and disinfection process (DP), were recommended to further eliminate the residual EDCs.  相似文献   

4.
We report a survey on the occurrence and distribution of nonylphenol (NP) and 17β-estradiol equivalent quotient (EEQ) concentrations in Donggang River, Taiwan. Concentrations of NP were measured with a high-performance liquid chromatography/fluorescent system and EEQs were carried with an MVLN cell line. Concentrations of NP ranged from less than 93 to 511 ng/L; EEQs ranged from less than 0.16 to 8.64 ng-E2/L. Concentrations of NP were higher in the dry season than in the wet season, which was affected by a high flow rate. In the main watercourse, higher EEQ occurred in the wet season than in the dry season; rainfall may have flushed substances containing estrogenic activity. NP and EEQ concentrations occurred in seawater only in the dry season, especially high EEQ values, and were not detected in the wet season. The reasons are not clear at this moment. Furthermore, NP concentrations provided low contribution to the total estrogenic activity.  相似文献   

5.
The presence of the anesthetic lidocaine (LDC), the analgesic tramadol (TRA), the antidepressant venlafaxine (VEN) and the metabolites O-desmethyltramadol (ODT) and O-desmethylvenlafaxine (ODV) was investigated in wastewater treatment plant (WWTP) effluents, in surface waters and in groundwater. The analytes were detected in all effluent samples and in only 64% of the surface water samples. The mean concentrations of the analytes in effluent samples from WWTPs with wastewater from only households and hospitals were 107 (LDC), 757 (TRA), 122 (ODT), 160 (VEN) and 637 ng L(-1) (ODV), while the mean concentrations in effluents from WWTPs treating additionally wastewater from pharmaceutical industries as indirect dischargers were for some pharmaceuticals clearly higher. WWTP effluents were identified as important sources of the analyzed pharmaceuticals and their metabolites in surface waters. The concentrations of the compounds found in surface waters ranged from 相似文献   

6.
Concentration levels of six natural and anthropogenic origin steroid estrogens, namely, diethylstilbestrol (DES), estrone (E1), estradiol (E2), estriol (E3), ethinylestradiol (EE2), and estradiol-17-valerate (Ev), from different effluents in Beijing were assessed. Sampling sites include two wastewater treatment plants (WWTPs), a chemical plant, a hospital, a pharmaceutical factory, a hennery, and a fish pool. In general, concentrations of estrogens in the effluents varied from no detection (nd) to 11.1 ng/l, 0.7 to 1.2 × 103 ng/l, nd to 67.4 ng/l, nd to 4.1 × 103 ng/l, nd to 1.2 × 103 ng/l, and nd to 11.2 ng/l for DES, E1, E2, EE2, E3, and Ev, respectively. The concentration levels of steroid estrogens from different effluents decreased in the order of pharmaceutical factory and WWTP inlets > hospital > hennery > chemical factory > fish pool. This study indicated that natural estrogens E1, E2, and E3 and synthetic estrogen EE2 are the dominant steroid estrogens found in the different Beijing effluents. For source identification, an indicator (hE = E3/(E1 + E2 + E3)) was used to trace human estrogen excretion. Accordingly, hE in effluents from the hospital and WWTP inlets exceeded 0.4, while much smaller values were obtained for the other effluents. Human excretions were the major contributor of natural estrogens in municipal wastewater. Estimation results demonstrated that direct discharge was the major contributor of steroid estrogen pollution in receiving waters.  相似文献   

7.
Estrogenic activity risks in the Pearl River system (Liuxi River, Zhujiang River and Shijing River) in South China were assessed by combined chemical analysis and recombinant yeast estrogen screen (YES) bioassay for surface waters and sediments collected in both dry and wet seasons. The xenoestrogens 4-tert-octylphenol, 4-nonylphenol and bisphenol A were detected at almost every sampling site at concentrations of several ng L(-1) (ng g(-1)) to tens of μg L(-1) (μg g(-1)) in surface waters (and sediments). The estrogens estrone and 17β-estradiol were also detected in most of the samples with concentrations from several ng L(-1) (ng g(-1)) to tens of ng L(-1) (ng g(-1)) in surface waters (and sediments). However, synthetic estrogens diethylstilbestrol and 17α-ethinylestradiol were only detected at a few sites. The 17β-estradiol equivalents (EEQ) screened by the YES bioassay were in the range of 0.23-324 ng L(-1) in surface waters and from not detected to 101 ng g(-1) in sediments. Shijing River displayed one to two orders of magnitude higher levels for both measured chemical concentrations and estrogenic activities than the Zhujiang River and the Liuxi River. A risk assessment for the surface waters showed high risks for the downstream reaches of the Liuxi River and the upstream to midstream reaches of the Zhujiang River and the Shijing River. Higher estrogenic risks were observed in the wet season than in the dry season for surface waters, probably due to the input of runoff and direct overflow of small urban streams during heavy rain events. Only small variations in estrogenic risk were found for the sediments between the two seasons, suggesting that sediments are a sink for these estrogenic compounds in the rivers.  相似文献   

8.
The mass flows of selected pharmaceuticals and personal care products (PPCPs) were studied in the aqueous compartment of the river Somes in Romania. PPCPs were measured in wastewater treatment effluents and in the receiving river water. The analytical method for the determination of PPCPs in river water was based on solid phase extraction and GC-ITMS. Carbamazepine, pentoxyfylline, ibuprofen, diazepam, galaxolide, tonalide and triclosan were determined in wastewater effluents with individual concentrations ranging from 15 to 774 ng L(-1). Caffeine was measured at concentrations up to 42 560 ng L(-1). Due to the high contamination of WWTP effluents, the receiving river was also polluted. The most abundant PPCPs measured in the Somes were caffeine, galaxolide, carbamazepine and triclosan. They were present at all the 15 sampling sites along the Somes, the concentrations ranging from 10 to 400 ng L(-1). The concentrations in the effluents of the different wastewater treatment plants (WWTPs) varied considerably and the differences are due to different elimination efficiencies of the studied PPCPs during sewage treatment. Only one of 5 WWTPs studied, the WWTP in Cluj-Napoca, was working properly, and therefore technical measures have to be taken for upgrading the WWTPs and reducing the environmental load of micropollutants. This study is the first overview of PPCPs along on Romanian part of river Somes.  相似文献   

9.
Estrogenic Endocrine Disrupting Chemicals (EDCs) are a concern due to their ubiquity and recognized adverse effects to humans and wildlife. Methods to assess exposure to and associated risks of their presence in aquatic environment are still under development. The aim of this work is to assess estrogenicity of raw and treated waters with different degrees of pollution. Chemical analyses of selected EDCs were performed by liquid chromatography-tandem mass spectrometry, and estrogenic activity was evaluated using in vitro bioluminescent yeast estrogen assay (BLYES). Most raw water samples (18/20) presented at least one EDC and 16 rendered positive in BLYES. When EDCs were detected, the bioassay usually provided a positive response, except when only bisphenol A was detected at low concentrations. The highest values of estrogenic activity were detected in the most polluted sites. The maximum estrogenic activity observed was 8.7 ng equiv. of E2 L(-1). We compared potencies observed in the bioassay to the relative potency of target compounds and their concentrations failed to fully explain the biological response. This indicates that bioassay is more sensitive than the chemical approach either detecting estrogenic target compounds at lower concentrations, other non-target compounds or even synergistic effects, which should be considered on further investigations. We have not detected either estrogenic activity or estrogenic compounds in drinking water. BLYES showed good sensitivity with a detection limit of 0.1 ng equiv. E2 L(-1) and it seems to be a suitable tool for water monitoring.  相似文献   

10.
Concern over steroid estrogens has increased rapidly in recent years due to their adverse health effects. Effluent discharge from wastewater treatment plants (WWTPs) is the main pollutant source for environmental water. To understand the pollutant level and fate of steroid estrogens in WWTPs, the occurrence of estrone (E1), 17-β-estradiol (E2), estriol (E3), and 17-β-ethinylestradiol (EE2) was investigated in the Gaobeidian WWTP in Beijing, China. Water samples from influent as well as effluent from second sedimentation tanks and advanced treatment processes were taken monthly during 2006 to 2007. In influent, steroid estrogen concentrations varied from 11.6 to 1.1?×?10(2)?ng/l, 3.7 to 1.4?×?10(2)?ng/l, no detection (nd) to 7.6×10(2)?ng/l and nd to 3.3?×?10(2)?ng/l for E1, E2, E3, and EE2, respectively. Compared with documented values, the higher steroid estrogen concentrations in the WWTP influent may be due to higher population density, higher birthrate, less dilution, and different sampling time. Results revealed that a municipal WWTP with an activated sludge system incorporating anaerobic, anoxic, and aerobic processes could eliminate natural and synthetic estrogens effectively. The mean elimination efficiencies were 83.2%, 96.4%, 98.8%, and 93.0% for E1, E2, E3, and EE2, respectively. The major removal mechanism for natural estrogens and synthetic estrogen EE2 were biodegradation and sorption on the basis of mass balance in water, suspension particles, and sludge. In the WWTP effluent, however, the highest concentrations of E1, E2, E3, and EE2 attained were 74.2, 3.9, 5.1, and 4.6?ng/l, respectively. This is concerning as residual steroid estrogens in WWTP effluent could lead to pollution of the receiving water. Advanced flocculation treatment was applied in the WWTP and transformed the residual estrogen conjugates to free species, which were reduced further by filtration with removal shifting from 32% to 57% for natural estrogen, although no EE2 was removed.  相似文献   

11.
The polycyclic musk fragrance compounds HHCB (1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-(g)-2-benzopyran; trade name, e.g. galaxolide) and AHTN (7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene, trade name, e.g. tonalide) and the transformation product of HHCB (HHCB-lactone) were analysed in surface water samples and sewage treatment plants (STP) effluents in the Ruhr megalopolis. The STPs were the dominant source for these pollutants. In the part of the river where the drinking water is extracted from the river, about 60 ng L(-1) HHCB, 10 ng L(-1) AHTN and 20-30 ng L(-1) HHCB-lactone were found as typical riverine concentrations, while none of the compounds were detected near the spring of the river. On the other hand sewage treatment plant effluents exhibited concentrations up to 600 ng L(-1). The STP's effluent resulted in elevated concentrations in some parts of the river and in the lakes into which they discharge. As some of the plants emit HHCB-lactone with a significantly changed enantiomeric pattern, biotransformation of HHCB to HHCB-lactone occurs in some waste water treatment plants operating with activated sludge. In those parts of the river where no relevant discharges of waste water or fresh water takes place neither the concentration nor the pattern changes significantly. This holds true especially for the HHCB versus HHCB-lactone ratios which indicates degradation less than 15% of the HHCB inventory in the river Ruhr itself. In other rivers, such as the Rhine, higher levels of HHCB-lactone in comparison to HHCB were detected (ratio 1 : 1).  相似文献   

12.
Nonylphenol (NP) is a representative environmental endocrine-disrupting chemical and persistent toxic pollutant. Previous studies have shown that the average concentration of NP in environmental waters was approximately tens to hundreds of ng L(-1) and it could even reach up to tens of μg L(-1). A simple, fast and accurate method employing a novel solid-phase extraction element named "Magic Chemisorber" (MC) followed by high-performance liquid chromatography (HPLC) using a fluorescence detector (FLD) was used for detecting NP. The most important parameters that affect the extraction process, including extraction time, desorption time, desorption solvent and repeatability, were optimized. The MC-HPLC method showed good linearity with concentrations of NP from 10 to 200 μg L(-1), a correlation coefficient of 0.9995 and the limit of detection (LOD) and limit of quantification (LOQ) of this method was 0.44 and 1.47 μg L(-1), respectively. Compared to commercial polydimethylsiloxane (PDMS) glass fiber, MC had both higher capacity and recovery and it could be used repeatedly. Using the MC-HPLC method we found that the concentration of NP in river water from Hangzhou city ranged from 8.54 ± 1.23 μg L(-1) (Qiantang River) to 65.77 ± 3.69 μg L(-1) (Tiesha River), which was similar to that of international regions heavily polluted with NP and higher than that of Bohai Bay, the Yellow River and the Pearl River Delta in China. This level of NP pollution is possibly related to the rapid development of the textile, printing and paper industries of Zhejiang province.  相似文献   

13.
Steroid estrogens such as estrone (E1), 17β-estradiol (E2), estriol (E3), and 17α-ethynylestradiol (EE2) have been suspected to be the main contaminants, which can affect the endocrine system of animals. Many authors have investigated these chemicals in the domestic wastewater treatment plants (WTP). However, wastewater from industries producing steroid contraceptives has not got ample attention. From the environmental point of view, the four steroids are very significant because even very low concentrations (ng/L) can cause reproductive disturbances in human, livestock and wildlife. The main purpose of the present investigation was to develop an analytical method for the determination of the four steroid estrogens present in WTP of a pharmacy factory, mainly producing contraceptive medicine in Beijing, China. Analysis was performed by solid-phase extraction (SPE) system and liquid chromatography combined with tandem mass spectrometry (LC/MS/MS). The average recoveries from effluent samples ranged from 88% to 103% and the precision of the method ranged from 9% to 4%. Based on 0.5-L wastewater samples, the limit of quantification (LOQ) was determined at 0.7 ng/L for E1, 0.8 for E2, 0.9 ng/L for E3, and 0.5 ng/L for EE2 in influent, and 1.0 ng/L for E2 and EE2, and 2.0 ng/L for E1 and E3 in effluent. In the influent samples, average concentrations of 80, 85, 73 and 155 ng/L were determined for E1, E2, E3 and EE2, respectively, showing that they were removed in this WTP to the extent of 79, 73, 85 and 67%, respectively.  相似文献   

14.
In this study, 16 polycyclic aromatic hydrocarbons (PAHs) were detected in sewage sludge samples from four wastewater treatment plants (WWTPs) in Qingdao, China. These WWTPs differ in the type of treatment used and in the origin of the wastewater. The total amounts of PAHs in digested sludges ranged from 1.9645 to 6.5752 mg/kg, which did not exceed the projected European Union cut-off limits (6 mg/kg) for sludge found in farmland, except for the Haibohe WWTP. Significant differences were observed in overall PAH values between WWTPs receiving domestic effluents and those receiving industrial effluents. The total amounts of PAHs in digested sludge from the Licunhe and Haibohe WWTPs, which mainly received industrial effluents, were markedly higher than those of the Tuandao and Huangdao WWTPs, which received only domestic effluents. The distribution of PAH compounds in digested sludges were analysed. At the Tuandao, Huangdao and Licunhe WWTPs, 2-, 3-, 4-benzene rings were predominant, accounting for 100%, 99.8% and 99.0% of the sum concentration of 16 PAHs (∑PAHs), respectively. At the Haibohe WWTP, a large number of high molecular weight PAHs (5-, 6-benzene rings) were observed, accounting for 30% of the ∑PAHs. The sum of seven carcinogenic PAHs (∑PAHs-c) ranged from 0.8694 to 3.0389 mg/kg in four WWTPs. The highest value was found in the Haibohe WWTP. Moreover, the PAH concentrations in sludges from the different treatment processes in the Licunhe and Tuandao WWTPs are discussed.  相似文献   

15.
Occurrence, variation and behaviour of nonylphenol (NP) and octylphenol (OP) were studied in surface water and groundwater in Guiyang, Guizhou Province, southwestern China. Discharge of wastewater from Guiyang City was the main source of alkylphenols (APs) entering the aquatic environment. The concentrations of NP and OP in river water ranged from 40 to 1582 ng L(-1) and from below the lowest limit of detection (LOD) to 67 ng L(-1), respectively. NP and OP were also detected in groundwater. Both NP and OP exhibited spatial and temporal variations in river water and groundwater. It was found that concentrations of NP and OP in river water was low upstream and dramatically increased downstream, and higher concentration of NP was found in winter compared to that in summer. Proportions of NP and OP were trapped by suspended particulate matter (SPM), which accounted for 7.6-50.0% and 3.4-25.6% of their total concentration in the river water system, respectively. Seasonal changes in water flow were responsible for the temporal variations of APs. To determine the behaviour of APs along the river, a mass balance equation based on chloride was used. The results showed that a mixing process was the predominant factor to determine upstream APs concentrations; while the discharge of wastewater controlled the concentrations of APs downstream. Considering the adverse effect of APs on organisms, combined effect modeling was used to assess the toxicity to fish. It was found that the predicted mixture effect for APs in river water on fish vitellogenin induction was low upstream and medium downstream, respectively.  相似文献   

16.
This study reports the first assessment of organotin pollution in the Hérault watershed, a medium size Mediterranean basin. Organotin compounds were analyzed in surface waters, wells supplying drinking water and sewage treatment plants (STPs). In surface and ground waters, a background contamination by total organotin compounds has been identified in the range of 0.51 +/- 0.02-71 +/- 2 ng(Sn) L(-1), which is of the same order of magnitude as those observed in other European areas. Organotins were systematically present in STP influents and sludge. Total or partial elimination of organotin compounds from treated wastewater was observed. STP effluents appeared nevertheless to be a non-negligible source of contamination not only of rivers but also of aquifers tapped for drinking water supply.Tributyltin concentration was higher than the maximum allowable concentration proposed by the European Commission in some surface waters and wells supplying drinking water. This could compromise the water resource and have serious and irreversible consequences for the aquatic eco-system. As it was the case for the ban of antifouling paints, a regulatory regime in decreasing point-source emissions of these harmful compounds used in household products might be applied.  相似文献   

17.
Whole effluent toxicity (WET) tests, with Daphnia magna and Selenastrum capricornutum, were introduced to evaluate the biological toxicities of effluents from the wastewater treatment plants (WWTPs) in Korea. In WET tests of WWTPs effluents, 33.3% (33/99) for D. magna and 92.6% (75/81) for S. capricornutum revealed greater than 1 toxic unit (TU), even though all the treatment plants investigated were operating in compliance with the regulations, as assessed using conventional monitoring methods (i.e., BOD and total concentration of N or P, etc). There were only minor differences in toxicities according to the types of influents (municipal and agro-industrial) in all treatment plants. However, the effluents treated by an activated sludge treatment process were found to exhibit significantly lower toxicity than those treated by rotating biological contactor (RBC) and extended aeration processes. The seasonal variations in the toxicity were lower in the summer compared to winter, which may have been due to the rainfall received to the sewage intake system during the former period. The impact of WET on river water was also investigated based on the discharge volume. At sites A and B, the total impact of toxicity to stream and river waters was observed to be 70.9% and 90.4% for D. magna and S. capricornutum, respectively. The other four small treatment plants (sites F, G, H and I), with relative discharging volumes between 0.001 and 0.002, contribute less than 1% to the total toxicity.  相似文献   

18.
A passive sampler (the polar organic chemical integrative sampler; POCIS) was assessed for its ability to sample natural estrogens (17β-estradiol, E2; estrone, E1 and estriol, E3) and the synthetic estrogen (17α-ethynylestradiol, EE2) in the outlet of a sewage treatment works over several weeks. The performance of the POCIS was investigated and optimised in the laboratory before field deployment with high recoveries (66-99%) were achieved for all estrogens. Moreover, it was shown that POCIS does not exhibit any preferential selectivity towards any of the target compounds. The sampling rates of E1, E2 and E3 were 0.018 ± 0.009, 0.025 ± 0.014 and 0.033 ± 0.019 L d(-1), respectively. Following field deployments of 28 days in the discharge of a sewage works, POCIS was shown to enhance the sensitivity of estrogen detection, especially for E3, and provide time-weighted average (TWA) concentrations of E1, E2 and E3, ranging from undetectable to 12 ng L(-1) upstream of the outflow of a sewage treatment works, 13 to 91 ng L(-1) at the outflow and 8 to 39 ng L(-1) downstream of the outflow. This revealed that E1, E2 and E3 are not completely removed during sewage treatment, with concentrations most likely being maintained by contributions from conjugated estrogen analogues. Grab water samples showed considerable variation in the concentrations of estrogens over a longer period (6 months). The results confirm that POCIS is an effective and non-discriminatory method for the detection of low concentrations of estrogens in the aquatic environment.  相似文献   

19.
Hospital effluent and connected waste water treatment plant (WWTP) influent and effluent were sampled daily to determine the levels and inter-day variations of three naturally occurring steroid estrogens: estrone, 17β-estradiol, estriol, and synthetic 17α-ethinylestradiol. After solid phase extraction, interferences were removed with a silica gel clean-up step and the samples analysed using gas chromatography with mass selective detection (GC-MSD). The determined inter-day concentrations in hospital effluent were between 8.6 to 31.3 ng L(-1) for estrone, 相似文献   

20.
Six trace contaminants (acesulfame (ACE), sucralose (SUC), carbamazepine (CBZ), diatrizoic acid (DTA), 1H-benzotriazole (BTZ) and its 4-methyl analogue (4-TTri)) were traced from wastewater treatment plants (WWTPs) to receiving waters and further to riverbank filtration (RBF) wells to evaluate their prediction power as potential wastewater markers. Furthermore, the persistence of some compounds was investigated in advanced wastewater treatment by soil aquifer treatment (SAT). During wastewater treatment in four conventional activated sludge WWTPs ACE, SUC, and CBZ showed a pronounced stability expressed by stable concentration ratios in influent (in) and effluent (out) (ACE/CBZ: in45, out40; SUC/CBZ: in1.8, out1.7; and ACE/SUC: in24, out24). In a fifth WWTP, additional treatment with powdered activated carbon led to a strong elimination of CBZ, BTZ, and 4-TTri of about 80% and consequently to a distinctive shift of their ratios with unaffected compounds. Data from a seven month monitoring program at seven sampling locations at the rivers Rhine and Main in Germany revealed the best concentration correlation for ACE and CBZ (r(2) = 0.94) and also a good correlation of ACE and CBZ concentrations to BTZ and 4-TTri levels (r(2) = 0.66 to 0.82). The comparison of ratios at different sampling sites allowed for the identification of a CBZ point source. Furthermore, in Switzerland a higher consumption of SUC compared to Germany can be assumed, as a steadily increasing ACE/SUC ratio along the river Rhine was observed. In RBF wells a good correlation (r(2) = 0.85) was again observed for ACE and CBZ. Both also showed the highest stability at a prolonged residence time in the subsurface of a SAT field. In the most peripheral wells ACE and CBZ were still detected with mean values higher than 36 μg L(-1) and 1.3 μg L(-1), respectively. Although SUC concentrations in wastewater used for SAT decreased by more than 80% from about 18 μg L(-1) to 2.1 μg L(-1) and 3.5 μg L(-1) in these outlying wells, the compound was still adequate to indicate a wastewater impact in a qualitative way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号