首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
京杭运河(苏州段)水质急性综合毒性研究   总被引:1,自引:0,他引:1  
从2009年3月至2010年10月对京杭运河(苏州段)的4个监测断面进行了水质急性综合毒性和地表水主要理化项目的调查,结果表明:京杭运河(苏州段)水质急性综合毒性基本处在低毒水平,各断面基本呈现水质急性毒性水平枯水期>平水期>丰水期的规律,水质急性综合毒性测定结果基本与同步理化监测结果一致。  相似文献   

2.
水环境对景观格局的变化极为敏感,水域(湿地)面积、分布格局、水质、水文特征等的变化,与土地变化和人类活动有着密切的关系,明确影响水质变化的关键景观因子,对于深入了解景观格局对水质的影响机制具有重要的研究价值。该研究选择广东省汕头市练江流域为研究对象,以2019年TM卫星影像、水质监测以及工业点源污染数据为基础,利用Spearman秩相关和多元线性回归模型等统计方法综合分析在子流域、河岸带尺度水平上景观格局与水质之间的相关性。研究结果表明:流域和河岸带的城镇比例、景观多样性和破碎度均对水质有较大影响,水质指标受到多个景观指数的综合影响,景观格局指数变化对总磷的解释能力要大于其他水质指标;氨氮、化学需氧量受河岸带尺度的景观格局影响更大,总磷受流域尺度景观格局影响更大;工业点源对景观格局与水质的关联分析有较大影响,剔除重点工业点源污染后的氨氮和化学需氧量与景观格局相关性比剔除重点工业点源污染前更高。  相似文献   

3.
丹江口水库湖北库区水质分区及长期变化趋势   总被引:1,自引:0,他引:1  
丹江口水库是南水北调中线工程水源地,准确地掌握丹江口水库水环境质量状况变化情况,对保障调水工程顺利进行有着极其重要的意义。基于水质理化指标将丹江口水库湖北库区水域划分为4个区,各分区的主要物理指标存在显著差异,化学指标较为均一;近10年水质历史监测数据显示,湖北库区除总氮指标外,其余监测指标水质类别均达到或优于Ⅱ类,总体水质保持优良;氨氮、总磷、总氮3项指标年均浓度从2007年起呈增加趋势,在2011年后均有所降低并趋于稳定。农业面源污染对丹江口水库水质影响较大。目前采取的各项环保措施对丹江口水库的水质产生了积极的影响,需继续加大各项治理措施的实施力度,完善水质监测系统,保障丹江口水库水质安全。  相似文献   

4.
辽河水体主要污染指标时空异质性分析   总被引:2,自引:0,他引:2  
利用1987~2009年辽河干流8个常规监测断面的历年监测数据,通过统计分析确定辽河水质的主要污染指标为化学需氧量(COD)和氨氮,2007年前辽河水质首要污染指标是COD,2008年和2009年氨氮超过COD成为辽河水质污染首要污染指标;分析干流两项指标的时间、水期、空间分布规律,明确给出水质污染重点治理时段和河段.  相似文献   

5.
滨海新区在大力发展工业的同时,面临水资源紧缺与水环境恶化等问题,基于2020年至2021年滨海新区内15个监测站位的丰水期、枯水期实测数据,通过改进型加拿大水质指数模型对滨海新区地表水进行水质评价,在水质评价的基础上,利用相关性分析与绝对主成分-多元线性回归模型分析影响地表水水质状况的污染源。15个水质监测站位水质评价结果表明:丰水期水质指数为32.27~82.80,良好水质站位1个,中等水质站位6个,较差水质站位7个,差等水质站位1个;枯水期水质指数为47.28~81.36,良好水质站位1个,中等水质站位12个,较差水质站位2个。污染源分析结果表明:丰水期中,污染源为生活污水、农业面源污染、养殖尾水点源污染;枯水期中,主要污染源为工业废水、生活污水、养殖尾水面源污染。  相似文献   

6.
基于2001—2011年洪泽湖水质溶解氧、高锰酸盐指数、总氮、氨氮和总磷长期定位监测数据,采用物元分析法研究洪泽湖渔业水质监测站位的优化布设。结果表明,用物元分析法将原来的21个监测站位优化为14个,监测点位优化后对监测结果无明显影响。  相似文献   

7.
水质自动监测与常规监测结果对比分析   总被引:2,自引:1,他引:1  
为了系统研究水质自动监测数据与常规监测数据间差异问题,选取15个运行多年的国家地表水水质自动监测站,对p H、溶解氧(DO)、高锰酸盐指数(COD_(Mn))、氨氮(NH_3-N)及总磷(TP)5项监测指标开展了站房外常规监测、站房内常规监测与自动监测的对比实验研究。通过分析监测结果之间相对误差、相对偏差、水质类别变化发现,站房内常规监测、站房外常规监测与自动监测结果之间误差较小;同时通过误差统计分析及直方图分析发现,地表水水质自动监测系统监测结果与站房外常规监测结果之间误差整体属于随机误差(偶然误差)。研究得到了水质自动监测与常规监测数据一致可比的结论,为水质自动监测数据的应用提供了实验基础。  相似文献   

8.
在物元分析的基础上,引入各监测断面到其所在类别的重心距离,构建了一种定量的监测断面优化方法。以2009年1月—2010年12月辽河干流水环境监测数据为基础,对辽河干流水质监测断面进行优化,并采用T检验、F检验和相邻断面监测数据相关性对优化结果验证。结果表明,使用改进的物元分析法优化后,辽河干流监测断面减少为6个,监测效率提高了25%。在优化后的监测断面与在原监测断面监测获得的数据均值无显著差异、方差齐,而且经过优化后的断面重复布设情况得到显著改善,水质监测断面合理性显著增强。  相似文献   

9.
基于2011—2015年茹河彭阳水质监测断面的水质数据,采用物元分析法对其断面水质进行评价;建立适用于该监测断面的马尔可夫预测模型对断面水质类别进行预测;同时依据平稳分布对各类水质的重现期作了分析。结果表明:彭阳水质监测断面水质为Ⅲ类;对马尔可夫链预测模型进行验证,满足预测精度;2015年9月和11月的水质类别预测结果均为Ⅲ类,且Ⅲ类水质出现的周期最短,属河流水质常态,其重现期为4.9个月,整体水质较好。  相似文献   

10.
2009年年底,中央财政再次划拨专项资金2945万元用于资助新疆各级环境监测站的监测能力建设。资助项目包括环境监测站标准化建设(697万元)、环保重点城市饮用水源地水质全分析监测能力建设(1723万元)、边境河流水质监测能力建设(525万元),资助对象涉及新疆环境监测总站,乌鲁木齐市、克拉玛依市2个环保重点城市环境监测站,伊犁、塔城、阿勒泰等5个边境地州环境监测站,以及伊宁市、阜康市、库尔勒市等16个县市级环境监测站。  相似文献   

11.
Water quantity and quality joint operation is a new mode in the present dams?? operation research. It has become a hot topic in governmental efforts toward integrated basin improvement. This paper coupled a water quantity and quality joint operation model (QCmode) and genetic algorithm with Soil and Water Assessment Tool (SWAT). Together, these tools were used to explore a reasonable operation of dams and floodgates at the basin scale. Wenyu River Catchment, a key area in Beijing, was selected as the case study. Results showed that the coupled water quantity and quality model of Wenyu River Catchment more realistically simulates the process of water quantity and quality control by dams and floodgates. This integrated model provides the foundation for research of water quantity and quality optimization on dam operation in Wenyu River Catchment. The results of this modeling also suggest that current water quality of Wenyu River will improve following the implementation of the optimized operation of the main dams and floodgates. By pollution control and water quantity and quality joint operation of dams and floodgates, water quality of Wenyu river will change significantly, and the available water resources will increase by 134%, 32%, 17%, and 82% at the downstream sites of Sha River Reservoir, Lutong Floodgate, Xinpu Floodgate, and Weigou Floodgate, respectively. The water quantity and quality joint operation of dams will play an active role in improving water quality and water use efficiency in Wenyu River Basin. The research will provide the technical support for water pollution control and ecological restoration in Wenyu River Catchment and could be applied to other basins with large number of dams. Its application to the Wenyu River Catchment has a great significance for the sustainable economic development of Beijing City.  相似文献   

12.
Diminishing freshwater resources have brought attention to the reuse of degraded water as a water resource rather than a disposal problem. Drainage water from tile-drained, irrigated agricultural land is degraded water that is often in large supply, but the long-term impact and sustainability of its reuse on soil is unknown. Similarly, nothing is known of the ramifications of terminating drainage water reuse. The objective of this study is (i) to monitor the long-term impact on soil chemical properties and thereby the sustainability of drainage water reuse on a marginally productive, saline-sodic, 32.4 ha field located on the west side of California's productive San Joaquin Valley and (ii) to assess spatially what happens to soil when drainage water reuse is terminated. The monitoring and assessment were based on spatial chemical data for soil collected during 10 years of irrigation with drainage water followed by 2 years of no applied irrigation water (only rainfall). Geo-referenced measurements of apparent soil electrical conductivity (EC(a)) were used to direct the soil sampling design to characterize spatial variability of impacted soil properties. Chemical analyses of soil samples were used (i) to characterize the spatial variability of salinity, Na, B, and Mo, which were previously identified as critical to the yield and quality of Bermuda grass (Cynodon dactylon (l.) Pers.) grown for livestock consumption and (ii) to monitor their change during the 12 year study. Soil samples were taken at 0.3 m increments to a depth of 1.2 m at each of 40 sample sites on five occasions: August 1999, April 2002, November 2004, August 2009, and May 2011. Drainage water varying in salinity (1.8-16.3 dS m(-1)), SAR (5.2-52.4), Mo (80-400 μg L(-1)), and B (0.4-15.1 mg L(-1)) was applied from July 2000 to June 2009. Results indicate that salts, Na, Mo, and B were leached from the root zone causing a significant improvement in soil quality from 1999 to 2009. Salinity and SAR returned to original levels or higher in less than two years after termination of irrigation. Boron and Mo showed significant increases. Long-term sustainability of drainage water reuse was supported by the results, but once application of irrigation water was terminated, the field quickly returned to its original saline-sodic condition.  相似文献   

13.
选取浏阳河流域为例,根据近十年河流断面监测数据,采用改进的综合污染指数法来评价水质污染程度,研究了该红壤丘陵区典型河流水质的时空变化特征,并结合土地利用和土壤特征等分析地表水质变化原因。结果表明,改进的综合污染指数法有较好的适用性;从时间特征上看,由于面源污染加剧,使得浏阳河近十年的水质污染呈增长趋势;从空间特征上看,浏阳河从上游到下游,河流污染呈增长趋势,上游水质较好,中游表现为重金属铅和汞的污染较大,而下游则是氨氮污染加剧。  相似文献   

14.
15.
Chemical monitoring of water quality on a total of 16 rivers in the Azores archipelago (Portugal), since 2003, made it possible to identify the major pressures and spatial geochemical variations along main course of the rivers. River water pollution is to a large extent associated to point sources, namely domestic wastewater discharges, especially in urban areas, and diffuse sources, associated with pasture land, and explain the high values on BOD(5) and nutrients (P and N). Heavy metals and metalloids, as well as hydrocarbons and pesticides, are generally under the detection limits of the analytical methods. Generally, river water reflects pollution loads according to a simple model, derived from land use in the watershed: in the upper part conditions are pristine, in the intermediate portion of the basin pasture land dominates and near the coast urban discharges are increasingly important. Results stress the role that an approach based on the watershed scale, coupled with land use management measures, are crucial to water management procedures and a successful WFD implementation in small river basin districts like the Azores. The paper also shows the need for full compliance regarding EU directives on urban wastewater and nitrate pollution due to agriculture.  相似文献   

16.
Monitoring changes in land cover and the subsequent environmental responses are essential for water quality assessment, natural resource planning, management, and policies. Over the last 75 years, the Lake Issaqueena watershed has experienced a drastic shift in land use. This study was conducted to examine the changes in land cover and the implied changes in land use that have occurred and their environmental, water quality impacts. Aerial photography of the watershed (1951, 1956, 1968, 1977, 1989, 1999, 2005, 2006, and 2009) was analyzed and classified using the geographic information system (GIS) software. Seven land cover classes were defined: evergreen, deciduous, bare ground, pasture/grassland, cultivated, and residential/other development. Water quality data, including sampling depth, water temperature, dissolved oxygen content, fecal coliform levels, inorganic nitrogen concentrations, and turbidity, were obtained from the South Carolina (SC) Department of Health and Environmental Control (SCDHEC) for two stations and analyzed for trends as they relate to land cover change. From 1951 to 2009, the watershed experienced an increase of tree cover and bare ground (+17.4 % evergreen, +62.3 % deciduous, +9.8 % bare ground) and a decrease of pasture/grassland and cultivated land (?42.6 % pasture/grassland and ?57.1 % cultivated). From 2005 to 2009, there was an increase of 21.5 % in residential/other development. Sampling depth ranged from 0.1 to 0.3 m. Water temperature fluctuated corresponding to changing air temperatures, and dissolved oxygen content fluctuated as a factor of water temperature. Inorganic nitrogen content was higher from December to April possibly due to application of fertilizers prior to the growing season. Turbidity and fecal coliform bacteria levels remained relatively the same from 1962 to 2005, but a slight decline in pH can be observed at both stations. Prior to 1938, the area consisted of single-crop cotton farms; after 1938, the farms were abandoned, leaving large bare areas with highly eroded soil. Starting in 1938, Clemson reforested almost 30 % of the watershed. Currently, three fourths of the watershed is forestland, with a limited coverage of small farms and residential developments. Monitoring water quality is essential in maintaining adequate freshwater supply. Water quality monitoring focuses mainly on the collection of field data, but current water quality conditions depend on the cumulative impacts of land cover change over time.  相似文献   

17.
Waterlogging and salinity due to seepage from canals have polluted land and environment in various parts of Pakistan. A sustainable environment requires urgent remedial measures for this problem. The research in this paper presents the impacts of the Fourth Drainage Project, Faisalabad on the twin problem of waterlogging and salinity. Monitoring of the project was made on regular basis. The key performance indicators for the project include the lowering of water table, improvement of water quality and soil salinity, increase in area under cultivation, cropping intensity, and socioeconomic status of the project population. Data regarding water levels and discharge from the drain pipes were collected to monitor the impact on waterlogging. Soil samples were tested to evaluate the impact of drainage on land. It has been found that the percentage of the contaminated land in the project area has considerably been decreased, while the cropping intensities have been increased.  相似文献   

18.
The focus of this research was upon consequences of urban stormwater runoff entering two streams in Mayagüez, Puerto Rico. Mayagüez is the largest urban area of the western side of the island of Puerto Rico and provides an excellent point of reference to monitor the affects of urban development on water quality in a tropical climate. The two monitored streams were Quebrada del Oro and Cano Majagual. The research hypothesis asks, "Does stormwater runoff from urban development measurably affect the water quality of downstream receiving water by raising the conductivity, temperature, and flow quantity characteristics during storm events in comparison to upstream water quality?" In essence, the results for Quebrada del Oro agreed with the hypothesis of this project, while Cano Majagual produced results different from the hypothesis primarily due to the absence of non-urbanized land use for both upstream and downstream sections as well as the buffering capacity of a large wetland just upstream of the downstream instrument location of Cano Majagual. Both streams showed signs of stream impairment according to the temperature criteria (32°C or 90°F) set by the Junta de Calidad Ambiental and the US Environmental Protection Agency. Dissolved oxygen levels of the streams were severely affected by water temperature and oxygen-consuming matter within these stream systems, making dissolved oxygen and temperature important water quality parameters for tropical climates.  相似文献   

19.
Water quality of rivers is strongly influenced by landscape characteristics of their watershed, including land use /cover types, and their spatial configuration. This research evaluates the effects of land cover changes on the water quality of the Zayandehroud River, which is the most important river in the center of Iran. The main goal of this study was to quantify the change in rangelands, forests, and bare lands in the Zayandehroud river basin, which suffered intense human interference, in a period of 11 years (1997–2008), and to evaluate how landscape patterns (including the number of patches, edge density, percentage of rangelands, forests, and bare lands) influence on the 14 water quality indices (including BOD5, EC, NO3, P, and TDS) measured in 10 stations along the river. Results showed that from 1997 to 2008, bare lands increased from 5.8 to 20 %, while rangelands decreased from 70 to 55 % in the whole basin. The results indicated that water quality was significantly correlated with both the proportions and configuration of rangeland and bare land areas. The total edge (TE) of rangeland area had positive effects on water quality, especially on BOD5 and EC. Percentage of landscape (PLAND) and largest patch index (LPI) metrics of rangeland had positive effect on decreasing nutrient (NO3, PO4). The results showed that water quality was more likely degraded when there was high edge density (ED) of bare lands. Results of this study also revealed that degradation of rangeland lead to the degradation of water quality. Finding of this study highlights the importance of rangeland conservation in water quality management at landscape scale.  相似文献   

20.
Human actions on landscapes are a principal threat to the ecological integrity of river ecosystems worldwide. Tropical landscapes have been poorly investigated in terms of the impact of catchment land cover alteration on water quality and biotic indices in comparison to temperate landscapes. Effects of land cover in the catchment at two spatial scales (catchment and site) on stream physical habitat quality, water quality, macroinvertebrate indices and community composition were evaluated for Uma Oya catchment in the upper Mahaweli watershed, Sri Lanka. The relationship between spatial arrangement of land cover in the catchment and water quality, macroinvertebrate indices and community composition was examined using univariate and multivariate approaches. Results indicate that chemical water quality variables such as conductivity and total dissolved solids are mostly governed by the land cover at broader spatial scales such as catchment scale. Shannon diversity index was also affected by catchment scale forest cover. In stream habitat features, nutrients such as N-NO3 ?, macroinvertebrate family richness, %shredders and macroinvertebrate community assemblages were predominantly influenced by the extent of land cover at 200 m site scale suggesting that local riparian forest cover is important in structuring macroinvertebrate communities. Thus, this study emphasizes the importance of services provided by forest cover at catchment and site scale in enhancing resilience of stream ecosystems to natural forces and human actions. Findings suggest that land cover disturbance effects on stream ecosystem health could be predicted when appropriate spatial arrangement of land cover is considered and has widespread application in the management of tropical river catchments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号