首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the study was to assess the prevalence of dental fluorosis, dental caries, and associated risk factors in the school children of district Fatehgarh Sahib, Punjab, India, using a cross-sectional study design. Oral health status of children aged between 8 and 15 years was assessed using World Health Organization (WHO) 2013 criteria. Dental fluorosis was assessed using Dean’s index, and dental caries were recorded using decayed, missing, filled/decayed, extracted, filled (DMF/def) indices. Four hundred school children were examined, of which 207 were in the 8–11-year-old group and 193 were in the 12–15-year-old group. The overall prevalence of dental fluorosis was 4.1%, which might be linked to a high concentration of fluoride in drinking water at certain locations of rural Punjab. The prevalence of dental caries was 36.5% with a mean DMF score of 0.3 and def score of 0.6. Risk factors for dental caries include oral hygiene behavior and sugar consumption patterns. The study highlights the need to increase awareness about the oral health and hygiene among the school children in India.  相似文献   

2.
The aim of this study was to estimate the risk for caries and fluorosis in a desertification area, applying the calcium/fluoride concentration ratio of underground water and the quality of water in a selected geographical region. This study was performed in the municipality of São João do Rio do Peixe, located in the tropical semiarid lands of Brazil. A total of 111 groundwater samples were collected. Fluoride concentration varied from 0.11 to 9.33 mg/L. Thirty percent of all samples analyzed showed values above 1.5 mg/L, while 64 % were above the ideal limit of 0.7 mg/L. Mean calcium concentration was 47.6 mg/L, and 14.4 % of all samples presented values above the WHO acceptable limits. The proportional value of calcium/fluoride in water showed that only 12 % of the samples were suitable for dental caries prevention with minimal risk for dental fluorosis. Mapping of the fluoride distribution indicated that approximately 2,465 people could be affected by dental fluorosis and 1,057 people might be affected by skeletal fluorosis. It can be concluded that, in addition to fluoride, many water parameters were not suitable for the drinking water. Mapping out calcium/fluoride ratio may indicate areas of water suitability for caries control, whereas the fluoride concentration solely can indicate the areas with the risk for fluorosis. This approach can be relevant for health authorities for identifying communities where dental caries or dental fluorosis is prevalent.  相似文献   

3.
India is among the 23 nations around the globe where health problems occur due to excess ingestion of fluoride (>1.5 mg/l) by drinking water. In Rajasthan, 18 out of 32 districts are fluorotic and 11 million of the populations are at risk. An exploratory qualitative survey was conducted to describe perception of the community regarding fluoride and related health problems in Central Rajasthan. A study on distribution and health hazards by fluoride contaminate in groundwater was performed in 1,030 villages of Bhilwara district of Central Rajasthan. One thousand thirty water samples were collected and analyzed for fluoride concentration. Fluoride concentration in these villages varies from 0.2 to 13.0 mg/l. Seven hundred fifty-six (73.4%) villages have fluoride concentration above 1.0 mg/l. Sixty (5.83%) villages have fluoride concentration above 5.0 mg/l with maximum numbers (24, 19.5%) from Shahpura tehsil. A detailed fluorosis study was carried out in 41 villages out of 60 villages having fluoride above 5.0 mg/l in the study age, sex, and occupation data were also collected. Four thousand, two hundred fifty-two individuals above 5 years age were examined for the evidence of dental fluorosis, while 1998 individuals above 21 years were examined for the evidence of skeletal fluorosis. The overall prevalence of dental and skeletal fluorosis was found to be 3,270/4,252 (76.9%) and 949/1,998 (47.5%), respectively. Maximum of 23.9% (1,016) individuals have mild grade of Dean’s classification. Three hundred seventy-four (8.8%) individuals have severe type of dental fluorosis. The Dean’s Community Fluorosis Index for the studied area in total is 1.62. Maximum CFI 3.0 was recorded from Surajpura of Banera Tehsil. Five hundred sixty-six (28.3%) individuals have Grade I type of skeletal fluorosis while only 0.6% (12) individuals have Grade III skeletal fluorosis. In conclusion, the prevalence and severity of fluorosis increased with increasing fluoride concentration. It was interesting to note that in some villages, the prevalence and severity of fluorosis were highest in subjects belonging to the economically poor community. Similarly, male laborers showed highest prevalence of fluorosis. Prevalence and severity of fluorosis were observed higher in subjects using tobacco, bettle nuts, and alcoholic drinks. In contrast, subjects using citrus fruits and having good nutritional status showed low prevalence.  相似文献   

4.
This study analyzes the concentrations and health risks of fluoride in 249 drinking water samples collected from different regions of Anhui Province in China. Results indicated that fluoride content in drinking water ranged from 0.12 to 1.94 mg L?1 (mean?=?0.57 mg L?1) in the following order: Huaibei plain region > Jianghuai hill region ≈ Dabieshan mountainous region > plain along the Yangtze River region > southern Anhui mountainous region. The fluoride contents were less than 0.50 mg L?1 in 66.66 % of the drinking water samples, 0.51–1.0 mg L?1 in 23.29 %, and higher than 1.0 mg L?1 in 12.04 %. The fluoride levels in some samples were lower than the recommended values for controlling dental caries (0.50–1.0 mg L?1). The total fluoride intake from drinking water was between 0.14 and 2.33 mg per day in different regions of the province, supposing an individual consumes 1.2 L of water per day. Therefore, measures should be taken to increase fluoride intake in the Jianghuai hill region, Dabieshan mountainous region, plain along the Yangtze River, and southern Anhui mountainous region to control dental caries. On the other hand, the fluoride levels must be reduced in the Huaibei plain region to decrease endemic fluorosis. The results serve as crucial guidelines for managing fluoride safety in drinking water and controlling endemic fluorosis in different regions of Anhui Province.  相似文献   

5.
The aim of this study was to evaluate the bacterial contamination level and to determine the antibiotic susceptibility of the isolated bacteria from dental unit waterlines (DUWLs) in Istanbul. Bacterial quality of DUWLs is very important, as patients and dental staff are regularly exposed to water and aerosols generated by the unit. If opportunistic pathogens such as Staphylococcus aureus, Pseudomonas aeruginosa, and Legionella pneumophila are present in DUWLs, patient and dental staff can be infected. One hundred water samples were collected from high-speed drills and input waters from 50 dental units. Aerobic heterotrophic bacteria counts and the presence of Legionella, Pseudomonas, oral streptococci, and Staphylococcus were investigated in dental unit waters and aerosol samples. In addition, the antibiotic susceptibility of the isolated and identified bacteria from DUWLs was examined. This research found that 37 out of 50 dental unit water samples exceeded the American Dental Association’s limit of 200 colony-forming units (CFU)/mL?1. Legionella, oral streptococci, and S. aureus were not detected in any water or aerosol samples, but P. aeruginosa was isolated in three DUWLs. Also, Pseudomonas and Staphylococcus were found in water and aerosol samples. Cefoperazone, ofloxacin, gentamicin, ciprofloxacin, and piperacillin were the most effective antibiotics against the isolated bacteria from DUWLs.  相似文献   

6.
To study the relationship between chemical elements in soil and whole blood, and fluorosis induced by coal-fired pollution, ecological and case–control studies were carried out. We determined the concentrations of 11 chemical elements and pH values in soil in two fluorosis-affected counties in Chongqing, China, and analyzed the correlation between these values and prevalence of dental fluorosis. Ni, I, F, Hg, and pH values positively correlated with fluorosis prevalence (P?<?0.05); these soil parameters may be related to coal-fired pollution fluorosis. Cu, Zn, Ca, Mg, and Fe concentrations in whole blood, and fluoride levels in urine of residents in epidemic and non-epidemic areas were determined. Cu, Zn, Mg, and Fe levels of the children in the case group were lower than those of the children in the external control group; urine fluoride level in the children in the case group was higher than that of the children in the internal and external control groups (P?<?0.05). The levels of Mg, Fe, and urine fluoride were higher in the case adult group than in the internal adult control group (P?<?0.05). Anti-fluoride elements were deficient in endemic areas.  相似文献   

7.
Safety of patients and dental personnel requires the appropriate microbiological water quality in dental units. During treatment, patients and dental workers are exposed both to direct contact with bacteria-contaminated water in the form of splatter and with contaminated water aerosol emitted during work by unit handpieces, including rotating and ultrasonic instruments. The aim of the study was to determine the qualitative and quantitative contamination of water in dental unit reservoirs with aerobic and facultative anaerobic bacteria. The study material included water sampled from 107 dental unit reservoirs located in dental surgeries of public health centres. Conventional microbiological methods were used to identify microorganisms. The study shows that the contamination of water in dental unit reservoirs with aerobic and facultative anaerobic bacteria is commonplace. The mean concentration of mesophile bacteria in dental unit reservoir water exceeded 1.1?×?105 cfu/ml. The prevailing species were Gram-negative bacteria of the families Burkholderiaceae, Pseudomonadaceae, Ralstoniaceae and Sphingomonadaceae. The most numerous bacteria were Ralstonia pickettii, constituting 49.33 % of all the identified aerobic and facultative anaerobic bacteria. Among Gram-positive rods, the most numerous were bacteria of the genus Brevibacterium (5.83 %), while the highest percentage shares (13.25 %) of all Gram-positive microorganisms were found for Actinomyces spp. The study confirms the necessity of regular monitoring of microbial contamination of dental unit waterlines (DUWL) and use of various water treatment procedures available to disinfect DWUL.  相似文献   

8.
The soils at a factory for manufacturing pentachlorophenol were heavily contaminated by polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). In order to verify the contributions of dry and wet deposition of PCDD/Fs from the ambient air, the concentration of PCDD/Fs in ambient air and soil were measured, the partition of particle- and gas-phases of atmospheric PCDD/Fs was calculated, and the annual fluxes of total dry and wet PCDD/F depositions were modeled. Average atmospheric PCDD/F concentration was 1.24 ng Nm???3 (or 0.0397 ng I-TEQ Nm???3). Moreover, over 92.8% of total PCDD/Fs were in the particle phase, and the dominant species were high chlorinated congeners. The total PCDD/F fluxes of dry and wet deposition were 119.5 ng m???2 year???1 (1.34 ng I-TEQ m???2 year???1) and 82.0 ng m???2 year???1 (1.07 ng I-TEQ m???2 year???1), respectively. By scenario simulation, the total fluxes of dry and wet PCDD/F depositions were 87.1 and 68.6 ng I-TEQ, respectively. However, the estimated PCDD/F contents in the contaminated soil were 839.9 ?? g I-TEQ. Hence, the contributions of total depositions of atmospheric PCDD/F were only 0.02%. The results indicated that the major sources of PCDD/F for the contaminated soil could be attributed to the pentachlorophenol manufacturing process.  相似文献   

9.
The present study showed that irrigation of soil with different effluent concentrations (10, 25, 50, 75, and 100 %) of distillery effluent (DE) for 60 days resulted in significant (P?<?0.001) changes in moisture content; electrical conductivity (EC), pH, chlorides (Cl?), total organic carbon (TOC), exchangeable sodium (Na+), available potassium (K+), calcium (Ca2+), magnesium (Mg2+), iron (Fe2+), total Kjeldahl nitrogen (TKN), available phosphorus (P), and sulfate (SO4 2?) of soil. The non-significant (P?>?0.05) changes were observed for water-holding capacity and bulk density of the soil. Among various concentrations of DE irrigation, irrigation with 100 % effluent concentration increased moisture content, (24.85 %), EC (77.88 %), Cl? (285.95 %), TOC (3,171.42 %), exchangeable Na+ (241.04 %), available K+ (52.49 %), Ca2+ (990.37 %), Mg2+ (1,751.72 %), TKN (1,417.00 %), available P (305.00 %), and SO4 2? (75.32 %) in the soil and decreased pH (?20.22 %). The more stimulation in agronomical parameters such as shoot length, root length, number of leaves, flowers, pods, dry weight, fresh weight, chlorophyll content, leaf area index, and crop yield of A. esculentus were observed to be inversely proportional to the concentration of effluent water, with the best results being obtained at a dilution of 25 % of DE concentration.  相似文献   

10.
The prevalence of fluorosis is mainly due to the consumption of more fluoride (F?1) through drinking water, vegetables, and crops. The objective of the study was mapping of F?1 endemic area of Newai Tehsil, Tonk district, Rajasthan, India. For the present study, water, soil (0–45 cm), and vegetation samples were collected from 17 villages. Fluoride concentration in water samples ranged from 0.3 to 9.8 mg/l. Out of 17 villages studied, the amounts of F?1 content of eight villages were found to exceed the permissible limits. Labile F?1 content and total F?1 content in soil samples ranges 11.00–70.05 mg/l and 50.3–179.63 μg g?1, respectively. F?1 content in tree species was found in this order Azadirachta indica 47.3255.76 μg g?1 > Prosopis juliflora 40.16–49.63 μg g?1 > Acacia tortilis 34.39–43.60 μg g?1. While in case of leafy vegetables, F?1 content order was Chenopodium album 54.23–98.42 μg g?1 > Spinacea oleracea 30.41–64.09 μg g?1 > Mentha arvensis 35.4851.97 μg g?1. The order of F?1 content in crops was found as 41.04 μg g?1 Pennisetum glaucum > 13.61 μg g?1 Brassica juncea > 7.98 μg g?1 Triticum sativum in Krishi Vigyan Kendra (KVK) farms. Among vegetation, the leafy vegetables have more F?1 content. From the results, it is suggested that the people of KVK farms should avoid the use of highly F?1 containing water for irrigation and drinking purpose. It has been recommended to the government authority to take serious steps to supply drinking water with low F?1 concentration for the fluorosis affected villages. Further, grow more F?1 hyperaccumulator plants in F?1 endemic areas to lower the F?1 content of the soils.  相似文献   

11.
To add data on trace metal contamination of Humboldt penguins in the South Pacific, levels of trace metals (As, Hg, Pb, Cu, Zn, and Cd) and porphyrins (copro-, uro-, and proto-) in excreta of Humboldt penguins that inhabit some important nesting sites on the northern coast of Chile were determined. Fresh excreta were collected on Pan de Azúcar Island, Chañaral Island, and Cachagua Island, from December 2011 to January 2012. Concentration of metals was determined by flame atomic absorption spectrophotometry, whereas porphyrins levels were measured by fluorimetric analysis. Concentrations (dry weight) of Cu (199.67 μg g?1), As (7.85 μg g?1), and Pb (12.78 μg g?1) were higher (p?≤?0.05) in Cachagua Island. Colonies from Pan de Azúcar Island showed the highest levels of Hg (0.76 μg g?1), Cd (47.70 μg g?1), and Zn (487.10 μg g?1). Samples from Cachagua Island showed the highest (p?≤?0.05) levels of copro- (2.16 nmol g?1), uro- (2.20 nmol g?1), and protoporphyrins (2.23 nmol g?1). There was a positive correlation between the metals As, Pb, and Cu with uro-, copro-, and protoporphyrins. The results indicated that penguin colonies from Cachagua Island are more exposed to metal contamination than penguin colonies from Pan de Azúcar and Chañaral Islands, thus being more likely to develop certain diseases caused by contamination with metals. Considering biomagnification, the metals detected in the excreta of Humboldt penguins can be a source of contamination from marine environments to terrestrial ecosystems, which could also affect other living organisms.  相似文献   

12.
The ability of cadmium uptake by metal-resistant yeast, Candida tropicalis, from the liquid medium and wastewater was evaluated. The minimum inhibitory concentration of Cd2?+? against C. tropicalis was 2,500 mg L???1. The yeast also showed tolerance toward Zn2?+? (1,400 mg L???1), Ni2?+? (1,000 mg L???1), Hg2?+? (1,400 mg L???1), Cu2?+? (1,000 mg L???1), Cr6?+? (1,200 mg L???1), and Pb2?+? (1,000 mg L???1). The yeast isolate showed typical growth curves, but lag and log phases extended in the presence of cadmium. The yeast isolate showed optimum growth at 30°C and pH 8. The metal processing ability of the isolate was determined in a medium containing 100 mg L???1 of Cd2?+?. C. tropicalis could decline Cd2?+? 70%, 85%, and 92% from the medium after 48, 96, and 144 h, respectively. C. tropicalis was also able to remove Cd2?+? 40% and 78% from the wastewater after 6 and 12 days, respectively. Cd produced an increase in glutathione (GSH) and nonprotein thiol levels by 135% and 134% at 100-mg L???1 concentration, respectively. An increase in the synthesis of GSH is involved in metal tolerance, and the presence of increasing GSH concentrations may be a marker for high metal stress in C. tropicalis. C. tropicalis, which is resistant to heavy metal ions and is adaptable to the local environmental conditions, may be employed for metal detoxification operations.  相似文献   

13.
The aim of the present study was to determine the level of antibiotic resistance patterns and distribution of heavy metal resistance of bacterial isolates from aquatic animals (Lissotriton vulgaris, Pelophylax ridibundus, Emys orbicularis, Mauremys rivulata, and Natrix natrix) in Turkey (Kavak Delta). A total of 153 bacteria have been successfully isolated from cloaca and oral samples of the aquatic amphibians and reptilians which were found, namely, Aeromonas sp. (n?=?29), Plesiomonas sp. (n?=?7), Vibrio sp. (n?=?12), Citrobacter sp. (n?=?12), Enterobacter sp. (n?=?11), Escherichia sp. (n?=?22), Klebsiella sp. (n?=?22), Edwardsiella sp. (n?=?6), Hafnia sp. (n?=?1), Proteus sp. (n?=?19), Providencia sp. (n?=?8), and Pseudomonas sp. (n?=?4). In terms of antibiotic and heavy metal susceptibility testing, each isolate was tested against 12 antibiotics and 4 metals. There was a high incidence of resistance to cefoxitin (46.40 %), ampicillin (44.44 %), erythromycin (35.29 %), and a low incidence of resistance to gentamicin (6.53 %), kanamycin (8.49 %), chloramphenicol (9.15 %), and cefotaxime (10.45 %). The multiple antibiotic resistance index of each bacterial species indicated that bacteria from raised amphibians and reptiles have been exposed to tested antibiotics, with results ranging from 0 to 0.58. Most isolates showed tolerance to different concentrations of heavy metals, and minimal inhibition concentrations ranged from100 to >3,200 μg/mL. According to these results, a significant occurrence of bacteria in the internal organs of reptiles and amphibians, with a high incidence of resistance against antibiotics and heavy metals, may risk aquatic animals and the public health. These data appoint the importance of epidemiological surveillance and microbiological monitoring and reinforce the need to implement environment protection programs for amphibian and reptile species.  相似文献   

14.
Intertidal ecosystems are being damaged by anthropogenic activities, particularly in the developing countries. In this study, the load of heavy metals was determined in water, fish, shrimp, and crab collected from four intertidal ecosystems, including coral reef, rocky shore, mangrove forest, and muddy habitat along the Persian Gulf coasts. Generally, the sequence of metal accumulation in the water of coral reef and mangrove forest was Ni > Pb > V > Cd > As > Hg, whereas in muddy habitats and rocky shores, the sequence was Ni > Pb > V > Cd > Hg > As and Ni > V > Pb > As > Hg > Cd, respectively. Water of the coral reef had the highest level of Ni (97.44 μg l?1), Pb (3.92 μg l?1), V (10.42 μg l?1), Cd (3.92 μg l?1), As (1.87 μg l?1), and Hg (0.74 μg l?1). For the most part, the highest concentrations of the studied metals were found in the liver and the gills of Johnius belangerii and the hepatopancreas of Portunus pelagicus and Metapenaus affinis collected from the coral reef ecosystem.  相似文献   

15.
The relationships between age (range: 3 to 14 yr), mandibular bone fluoride level (marker of accumulated internal dose, range: 597 to 4680 mg F- kg-1> dry wt) and intensity of dental fluorosis (reflecting fluoride exposure during enamel formation) were studied in a sample of 53 fluorosed red deer from a fluoride-polluted area in the Czech-German border region (Ore mountains and their southern foreland). Assessment of the severity of dental fluorosis was performed for the 3 permanent premolars and 3 molars of one hemimandible per animal by using an ordinal measurement scale. For statistical analysis, the maximum tooth score of fluorosis (MTS) and the dental lesion index of fluorosis (DLI, sum of the six tooth scores per individual) were used. In the sample, both MTS (rs = 0.850) and DLI (rs = 0.813) were highly significantly (p <0.00001) correlated with bone fluoride content. A weaker correlation existed between age and bone fluoride content (rs = 0.322, p <0.05). The results demonstrate that in case of regional, long-term fluoride pollution, dental fluorosis (measured as MTS or DLI) can be used as a sensitive biomarker of fluoride exposure in deer and thus as an indicator of the level of environmental contamination by fluorides. In many countries, skulls and mandibles of wild deer are regularly and continuously collected by hunters. Assessment of the prevalence and severity of dental fluorosis in this material offers the opportunity for an efficient large-scale biomonitoring of environmental pollution by fluorides at very low cost.  相似文献   

16.
The microbiological quality in dental unit waterlines (DUWLs) is considered to be important because patients and dental staff with suppressed immune systems are regularly exposed to water and aerosols generated from dental units (DUs). Opportunistic pathogens like Pseudomonas, Legionella, Candida, and Aspergillus can be present in DUWLs, while during consultations, bioaerosols can be dispersed in the air, thus resulting in effects on microbiological quality of indoor air. This present study represents microbiological air and water quality in dental offices (DOs) and also concerns the relationship between the quality of DO air and dental unit water. This study aimed to assess both the microbial quality of dental unit water and the indoor air in 20 DOs and to survey the effect on the quality of the indoor air with the existing microorganisms in dental unit water. Fourteen out of 20 (70 %) DUWLs were found to be contaminated with a high number of aerobic mesophilic heterotrophic bacteria. In terms of bacterial air contamination levels, in 90 % of DOs, a medium level (<500 colony-forming units (CFU)/m3) of contamination was determined, while in terms of microfungal air contamination, in all DOs, a low level (<100 CFU/m3) of contamination was determined. Potential infection or allergen agents, such as Pseudomonas, Micrococcus, Staphylococcus, Alternaria, Cladosporium, Penicillium, Aspergillus, and Paecilomyces were isolated from water and air samples. This study’s determination of contamination sources and evaluation of microbial load in DOs could contribute to the development of quality control methods in the future.  相似文献   

17.
Ferti-irrigation response of 5, 10, 25, 50, 75, and 100 % concentrations of the sugar mill effluent (SME) on French bean (Phaseolus vulgaris L., cv. Annapurna) in the rainy and summer seasons was investigated. The fertigant concentrations produced significant (P?+), potassium (K+), calcium (Ca2+), magnesium (Mg2+), total Kjeldahl nitrogen (TKN), phosphate (PO4 3?), sulfate (SO4 2?), ferrous (Fe2+), cadmium (Cd), chromium (Cr), copper (Cu), manganese (Mn), and zinc (Zn), in both seasons. The contents of Cr, Cu, Mn, and Zn except Cd were found to be below the maximum levels permitted for soils in India. The agronomic performance of P. vulgaris was gradually increased at lower concentrations, i.e., from 5 to 25 %, and decreased at higher concentrations, i.e., from 50 to 100 %, of the SME in both seasons when compared to controls. The accumulations of heavy metals were increased in the soil and P. vulgaris from 5 to 100 % concentrations of the SME in both seasons. The contents of Cu, Mn, and Zn except Cd and Cr were noted under the permissible limit of Food and Agriculture Organization (FAO)/World Health Organization (WHO) standards. Most contents of biochemical components like crude proteins, crude fiber, and total carbohydrates were found with 25 % concentration of the SME in both seasons. The contamination factor (Cf) of various metals was in the order of Cd > Cr > Zn > Mn > Cu for soil and Mn > Zn > Cu > Cr > Cd for P. vulgaris in both seasons after fertigation with SME. Therefore, the SME can be used to improve the soil fertility and yield of P. vulgaris after appropriate dilution.  相似文献   

18.
A geophysical survey was conducted over an industrial belt encompassing 80 functional leather factories in Southern India. These factories discharge untreated effluents which pollute shallow groundwater where electrical conductivity (EC) value had a wide range between 545 and 26,600 μS/cm (mean, 3, 901 μS/cm). The ranges of Na+ and Cl? ions were from 46 to 4,850 mg/L (mean, 348 mg/L) and 25 to 10,390 mg/L (mean, 1,079 mg/L), respectively. Geoelectrical layer parameters of 37 vertical electrical soundings were analyzed to demarcate fresh and saline water zones. However, the analysis not did lead to a unique resolution of saline and fresh waters. It was difficult to assign a definitive value to the aquifer resistivity of any area. Thus, geophysical indicators, namely longitudinal unit conductance (S), transverse unit resistance (T), and average longitudinal resistivity (R s), were calculated for identifying fresh and saline waters. Spatial distributions of S, T, and R s reflected widely varying ranges for the saline and fresh water zones. Further, the empirical relation of formation factor (F) was established from pore-water resistivity and aquifer resistivity for fresh and saline aquifers, which may be used to estimate local EC values from the aquifer resistivity, where well water is not available.  相似文献   

19.
This work proposes a procedure for the determination of total selenium content in shellfish after digestion of samples in block using cold finger system and detection using atomic fluorescent spectrometry coupled hydride generation (HG AFS). The optimal conditions for HG such as effect and volume of prereduction KBr 10 % (m/v) (1.0 and 2.0 ml) and concentration of hydrochloric acid (3.0 and 6.0 mol L?1) were evaluated. The best results were obtained using 3 mL of HCl (6 mol L?1) and 1 mL of KBr 10 % (m/v), followed by 30 min of prereduction for the volume of 1 mL of the digested sample. The precision and accuracy were assessed by the analysis of the Certified Reference Material NIST 1566b. Under the optimized conditions, the detection and quantification limits were 6.06 and 21.21 μg kg?1, respectively. The developed method was applied to samples of shellfish (oysters, clams, and mussels) collected at Todos os Santos Bay, Bahia, Brazil. Selenium concentrations ranged from 0.23?±?0.02 to 3.70?±?0.27 mg kg?1 for Mytella guyanensis and Anomalocardia brasiliana, respectively. The developed method proved to be accurate, precise, cheap, fast, and could be used for monitoring Se in shellfish samples.  相似文献   

20.
Field experiments were conducted in open top chamber during rabi seasons of 2009–10 and 2010–11 at the research farm of the Indian Agricultural Research Institute, New Delhi to study the effect of tropospheric ozone (O3) and carbon dioxide (CO2) interaction on yield and nutritional quality of Indian mustard (Brassica juncea (L.) Czern.). Mustard plants were grown from emergence to maturity under different treatments: charcoal-filtered air (CF, 80–85 % less O3 than ambient O3 and ambient CO2), nonfiltered air (NF, 5–10 % less O3 than ambient O3 and ambient CO2 ), nonfiltered air with elevated carbon dioxide (NF?+?CO2, NF air and 550?±?50 ppm CO2), elevated ozone (EO, NF air and 25–35 ppb elevated O3), elevated ozone along with elevated carbon dioxide (EO?+?CO2, NF air, 25–35 ppb O3 and 550?±?50 ppm CO2), and ambient chamber less control (AC, ambient O3 and CO2). Elevated O3 exposure led to reduced photosynthesis and leaf area index resulting in decreased seed yield of mustard. Elevated ozone significantly decreased the oil and micronutrient content in mustard. Thirteen to 17 ppm hour O3 exposure (accumulated over threshold of 40 ppm, AOT 40) reduced the oil content by 18–20 %. Elevated CO2 (500?±?50 ppm) along with EO was able to counter the decline in oil content in the seed, and it increased by 11 to 13 % over EO alone. Elevated CO2, however, decreased protein, calcium, zinc, iron, magnesium, and sulfur content in seed as compared to the nonfiltered control, whereas removal of O3 from air in the charcoal-filtered treatment resulted in a significant increase in the same.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号