首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
A long history of urbanization and industrialization has affected trace elements in New York City (NYC) soils. Selected NYC pedons were analyzed by aqua regia microwave digestion and sequential chemical extraction as follows: water soluble (WS); exchangeable (EX); specifically sorbed/carbonate bound (SS/CAR); oxide-bound (OX); organic/sulfide bound (OM/S). Soils showed a range in properties (e.g., pH 3.9 to 7.4). Sum of total extractable (SUMTE) trace elements was higher in NYC parks compared to Bronx River watershed sites. NYC surface horizons showed higher total extractable (TE) levels compared to US non-anthropogenic soils. TE levels increased over 10 year in some of the relatively undisturbed and mostly wooded park sites. Surface horizons of park sites with long-term anthropogenic inputs showed elevated TE levels vs. subsurface horizons. Conversely, some Bronx River watershed soils showed increased concentrations with depth, reflective of their formation in a thick mantle of construction debris increasing with depth and intermingled with anthrotransported soil materials. Short-range variability was evident in primary pedons and satellite samples (e.g., Pb 253?±?143 mg/kg). Long-range variability was indicated by PbTE (348 versus 156 mg/kg) and HgTE (1 versus 0.3 mg/kg) concentrations varying several-fold in the same soil but in different geographic locations. Relative predominance of fractions: RES (37 %)?>?SS/CAR (22 %)?>?OX (20 %)?>?OM/S (10 %)?>?EX (7 %)?>?WS (4 %). WS and EX fractions were greatest for Hg (7 %) and Cd (14 %), respectively. RES was predominant fraction for Co, Cr, Ni, and Zn (41 to 51 %); SS/CAR for Cd and Pb (40 and 63 %); OM/S for Cu and Hg (36 and 37 %); and OX for As (59 %).  相似文献   

2.
This study is carried out to evaluate potentially toxic metal concentrations (As, Cd, Cr, Cu, Hg, Mo, Ni, Pb, and Zn) together with their spatial distribution, degree of pollution, and potential ecological risk in Kor river sediments (southwest Iran) using sediment quality guidelines, geoaccumulation index (I geo), Hakanson potential ecological risk index (RI), and standard methods of statistical analysis. The study area stretches some 140 km from the Drodzan Dam to Bakhtegan Lake, a stretch of river where different industrial and domestic activities (e.g., petrochemical complex, oil refinery, industrial meat processing complex, Marvdasht city sewage) and ecological value overlap with each other. Calculated geoaccumulation index indicate that 50 % of the stations are moderately to very extremely polluted. The potential ecological risk for nine investigated metals in Kor river is Hg (948)?>?Mo (51.9)?>?Ni (37.8)?>?Cd (29.8)?>?As (22)?>?Cu (16.6)?>?Pb (13.3)?>?Zn (3.3)?>?Cr (1). Results show that sediments in parts of Kor river sediments are heavily affected by effluents discharged from industrial plants and other parts are affected by agriculture and urban runoff from nearby lands. These phenomena may cause a risk of secondary water pollution under sediment disturbance and/or changes in the physical–chemical characteristics of the aquatic system.  相似文献   

3.
Concentrations of 12 metals (Fe, Mn, Cr, Mo, Ni, Pb, Se, Sr, U, V, Zn, and Zr) in surface sediments of Karachi Coast, Pakistan were determined to evaluate their distribution and pollution assessment. The measured metals in the sediments were found to be in the range of Fe, 0.84–6.96 %; Mn, 300–1,300 μg/g; Cr, 12.0–319.84 μg/g; Mo, 0.49–2.03 μg/g; Ni, 1.53–58.86 μg/g; Pb, 9.0–49.46 μg/g; Se, 0.25–.86 μg/g; Sr, 192–1185 μg/g; U, 0.19–1.66 μg/g; V, 15.80–118.20 μg/g; Zn, 15.60–666.28 μg/g; and Zr, 44.02–175.26 μg/g. The mean contents of the metal studied were: Fe, 3.07 %, Mn, 0.05 %; Cr, 96.75 μg/g; Mo, 1.34 μg/g; Ni, 31.39 μg/g; Pb, 23.24 μg/g; Se, 0.61 μg/g; Sr, 374.83 μg/g; U, 0.64 μg/g; V, 61.75 μg/g; Zn, 204.75 μg/g; and Zr:76.27 μg/g, and arrangement of the metals from higher to lower mean content in this area is: Fe?>?Zn?>?Mn?>?Sr?>?Zn?>?Cr?>?Zr?>?V?>?Ni?>?Pb?>?Mo?>?U?>?Se. There is no significant correlation among most of these metals, indicating different anthropogenic and natural sources. To assess ecotoxic potential of marine sediments, Numerical Sediment Quality Guidelines were also applied. The concentration of Pb in all the sediments except one was lower than the threshold effect concentration (TECs) showing that there are no harmful effects to marine life from Pb. On the other hand, the concentrations of Cr, Ni, and Zn exceeded TEC in three stations, indicating their potential risk. The degree of pollution in sediments for metals was assessed by calculating enrichment factor (EF) and pollution load index (PLI). The results indicated that sediments of Layari River Mouth Area, Fish Harbour, and KPT Boat Building Area are highly enriched with Cr and Zn (EF?>?5). Sediments of Layari River Outfall Zone were moderately enriched with Ni and Pb (EF?>?2). The pollution load index was found in the range of 0.98 to 1.34. Lower values of PLI (≤1) at most of sampling locations imply no appreciable input from anthropogenic sources. However, relatively higher PLI values (>1) at Layari River Mouth Area, Fish Harbour, and KPT Boat Building Area are attributed to increased human activity in the area.  相似文献   

4.
A microwave-assisted extraction (MAE) method was verified and applied for the extraction of polycyclic aromatic hydrocarbons (PAHs) in sediment samples. Soxhlet extraction was used as the reference method. The optimum MAE was carried out with 20 mL of hexane/acetone (1:1, v/v) mixture in a 1-g sample at 250 W for 20 min. Soxhlet extraction was carried out with 250 mL of dichloromethane:hexane (1:1, v/v) mixture in a 15-g sample for 24 h in a water bath maintained at 60 °C. The collected extracts were both cleaned up, reduced to 1 mL under nitrogen and then injected into an HPLC fluorescence. To increase the sample throughput, simultaneous MAE was performed. The obtained percentage recoveries ranged from 61 to 93 and 88–98 for MAE and SE, respectively. The optimised MAE method was validated using certified reference material. It was then applied to real sediment samples from in and around the greater Johannesburg area. The sediments from Jukskei River were found to be the most polluted while Hartbeespoort Dam sediments were found to be least polluted. The overall order of concentrations for the studied PAHs per site was as follows: Jukskei River?>?Kempton Park?>?Centurion Dams?>?Natalspruit River (PIT)?>?Hartbeespoort Dam.  相似文献   

5.
The Haraz River is one of the most significant rivers in the southern Caspian Sea basin. Towards the estuary, the river receives discharges of industrial, agricultural, and urban wastes. In the present investigation, bulk concentrations of Cu, Zn, As, Cd, Pb, Fe, Ni, Cr, Co, and Sr in Haraz River (Iran) bed sediments were measured from several sample locations. In addition, association of studied metals with various sedimentary phases was assessed to determine the proportions of metals in different forms. The intensity of sediment contamination was evaluated using an enrichment factor (EF), geo-accumulation index (Igeo), and a newly developed pollution index (Ipoll). Both EF and Igeo formulae compare present concentrations of metals to their background levels in crust and shale, respectively. In a specific area with its own geological background like Haraz River water basin where naturally high concentrations of metals may be found, such a comparison may lead to biased conclusions regarding levels of anthropogenic contamination. Accordingly, chemical partitioning results are substituted for the mean crust and shale levels in the new index (Ipoll). The Pearson correlation coefficient between the anthropogenic portion of metallic pollution in Haraz river-bed sediments with Ipoll showed much more value in comparison with those of geochemical accumulation index and enrichment factor. The order of metals introduced by anthropogenic activities are as follows: Sr > Pb > Co > Cd > Zn > Cu > Ni > As > Cr > Fe. The results showed relatively higher concentrations of Cd, As, Sr, and Pb in comparison with those of shale. However, based on the chemical partitioning of metals, it is found that Sr, Pb, Co, and Cd are the most mobile metals. In spite of the high As concentrations in sediments, it is not likely that this element is a major hazard for the aquatic environment since it is found mainly in the residual fraction. Also, Fe, Cr, and Ni are present in the greatest percentages in the residual fraction, which implies that these metals are strongly linked to the sediments.  相似文献   

6.
Land use impact on soil quality in eastern Himalayan region of India   总被引:1,自引:0,他引:1  
Quantitative assessment of soil quality is required to determine the sustainability of land uses in terms of environmental quality and plant productivity. Our objective was to identify the most appropriate soil quality indicators and to evaluate the impact of six most prevalent land use types (natural forestland, cultivated lowland, cultivated upland terrace, shifting cultivation, plantation land, and grassland) on soil quality in eastern Himalayan region of India. We collected 120 soil samples (20 cm depth) and analyzed them for 29 physical, chemical, and biological soil attributes. For selection of soil quality indicators, principal component analysis (PCA) was performed on the measured attributes, which provided four principal components (PC) with eigenvalues >1 and explaining at least 5 % of the variance in dataset. The four PCs together explained 92.6 % of the total variance. Based on rotated factor loadings of soil attributes, selected indicators were: soil organic carbon (SOC) from PC-1, exchangeable Al from PC-2, silt content from PC-3, and available P and Mn from PC-4. Indicators were transformed into scores (linear scoring method) and soil quality index (SQI) was determined, on a scale of 0–1, using the weighting factors obtained from PCA. SQI rating was the highest for the least-disturbed sites, i.e., natural forestland (0.93) and grassland (0.87), and the lowest for the most intensively cultivated site, i.e., cultivated upland terrace (0.44). Ratings for the other land uses were shifting cultivation (0.60)?>?cultivated low land (0.57)?>?plantation land (0.54). Overall contribution (in percent) of the indicators in determination of SQI was in the order: SOC (58 %)?>?exch. Al (17.1 %)?>?available P (8.9 %)?>?available Mn (8.2 %)?>?silt content (7.8 %). Results of this study suggest SOC and exch. Al as the two most powerful indicators of soil quality in study area. Thus, organic C and soil acidity management holds the key to improve soil quality under many exploitatively cultivated land use systems in eastern Himalayan region of India.  相似文献   

7.
The accumulation of heavy metals in soil and water is a serious concern due to their persistence and toxicity. This study investigated the vertical distribution of heavy metals, possible sources and their relation with soil texture in a soil profile from seasonally waterlogged agriculture fields of Eastern Ganges basin. Fifteen samples were collected at ~0.90-m interval during drilling of 13.11 mbgl and analysed for physical parameters (moisture content and grain size parameters: sand, silt, clay ratio) and heavy metals (Fe, Mn, Cr, Cu, Pb, Zn, Co, Ni and Cd). The average metal content was in the decreasing order of Fe?>?Mn?>?Cr?>?Zn?>?Ni?>?Cu?>?Co?>?Pb?>?Cd. Vertical distribution of Fe, Mn, Zn and Ni shows more or less similar trends, and clay zone records high concentration of heavy metals. The enrichment of heavy metals in clay zone with alkaline pH strongly implies that the heavy metal distributions in the study site are effectively regulated by soil texture and reductive dissolution of Fe and Mn oxy-hydroxides. Correlation coefficient analysis indicates that most of the metals correlate with Fe, Mn and soil texture (clay and silt). Soil quality assessment was carried out using geoaccumulation index (I geo), enrichment factor (EF) and contamination factor (CF). The enrichment factor values were ranged between 0.66 (Mn) and 2.34 (Co) for the studied metals, and the contamination factor values varied between 0.79 (Mn) and 2.55 (Co). Results suggest that the elements such as Cu and Co are categorized as moderate to moderately severe contamination, which are further confirmed by I geo values (0.69 for Cu and 0.78 for Co). The concentration of Ni exceeded the effects-range median values, and the biological adverse effect of this metal is 87 %. The average concentration of heavy metals was compared with published data such as concentration of heavy metals in Ganga River sediments, Ganga Delta sediments and upper continental crust (UCC), which apparently revealed that heavy metals such as Fe, Mn, Cr, Pb, Zn and Cd are influenced by the dynamic nature of flood plain deposits. Agricultural practice and domestic sewage are also influenced on the heavy metal content in the study area.  相似文献   

8.
Concentrations of trace metals in the South China Sea (SCS) were determined off the coast of Terengganu during the months of May and November 2007. The concentrations of dissolved and particulate metals were in the range of 0.019–0.194 μg/L and 50–365 μg/g, respectively, for cadmium (Cd), 0.05–0.45 μg/L and 38–3,570 μg/g for chromium (Cr), 0.05–3.54 μg/L and 21–1,947 μg/g for manganese (Mn), and 0.03–0.49 μg/L and 2–56,982 μg/g for lead (Pb). The order of mean log K D found was Cd?>?Cr?>?Pb?>?Mn. The study suggests that the primary sources of these metals are discharges from the rivers which drain into the SCS, in particular the Dungun River, which flows in close proximity to agricultural areas and petrochemical industries. During the northeast monsoon, levels of particulate metals in the bottom water samples near the shore were found to be much higher than during the dry season, the probable result of re-suspension of the metals from the bottom sediments.  相似文献   

9.
In this research, we study on the distribution of several elements in bed sediments of Anzali wetland. Anzali, one of the most important international wetlands, is located on the southern coast of the Caspian Sea in Iran. This wetland receives discharges of domestic, agricultural, and industrial wastewater, which affect the distribution of elements. Our contribution in this study is threefold. First, we measured the total concentration of metals as well as their chemical partitioning and bioavailability in the sediments. Second, we calculated anthropogenic portions of metals in the sediment of this area. The results reveal anthropogenic portion of metals as Mo > Mn > Cd > As > Zn > Hg > Co > Sn > Cu > V > Ag > Ni > Pb > Fe > Cr > Al, respectively. We evaluated the intensity of pollution by using an enrichment factor, the geo-accumulation index and the pollution index. All these indices do not take into consideration the bioavailability of the elements. As our third and most important contribution, we introduced a new formula that takes into account the bioavailability of different elements. In comparison with aforementioned pollution indices, our newly introduced pollution index has a higher Pearson correlation with anthropogenic portion of metals. This high-correlation coefficient shows that our proposed pollution index is an effective indicator for determining the level of pollution, while other indices preserve their own merits.  相似文献   

10.
Nine metals were monitored in the beach sediment in Mumbai from May 2011 to March 2012 to evaluate the spatial and temporal distributions. The average heavy metal concentrations exhibited the following order: Fe > Mn > Cr > Co > Ni > Pb > Zn > Cu > Cd for the four sampling sites. The mean concentrations (± SD) of Fe, Mn, Cr, Co, Ni, Pb, Zn, Cu and Cd were estimated to be 31.15?±?10.02 g kg?1, 535.04?±?76.42, 151.98?±?97.90, 92.76?±?14.18, 67.52?±?11.32, 59.57?±?15.19, 54.65?±?15.01, 32.24?±?8.07 and 18.75?±?1.76 mg kg?1, respectively. The results indicated that the sediments were polluted with Cd, Cr, Co and Pb due to high anthropogenic influences. Spatial variation of metals revealed that most of the metals were high in Dadar beach and low in Aksa beach. Cd was the highest contaminant metal studied with a mean contamination factor of 93.75. The pollution load indices of the studied beaches ranged from 1.63 (Aksa) to 1.91 (Dadar) and indicated that the beach sediments were polluted with heavy metals. The heavy metal contents increased in relation to monsoon, and most of the heavy metals showed significantly high concentrations in November during the post-monsoon. The statistical analysis revealed significant effect of study site on all the metals studied. Further, there was a significant difference on metal accumulation on bimonthly basis in relation to weather pattern in Mumbai beaches.  相似文献   

11.
The heavy metals (Fe, Zn, Pb, Ni, Cr, Co, and Cd) burden in wastewater, soil, and vegetable samples from a wastewater irrigated farm located at KorleBu, Accra has been investigated. Flame atomic absorption spectrometry after microwave digestion using a combination of HNO3, HCl, and H2O2 (for water), and HNO3 and HCl (for soil and vegetables). The mean concentrations (in milligrams per kilogram) of heavy metals in the soil samples were in the order of Fe (171?±?5.22)?>?Zn (36.06?±?4.54)?>?Pb (33.35?±?35.62)?>?Ni (6.31?±?8.15)?>?Cr (3.40?±?3.63)?>?Co (1.36?±?0.31)?>?Cd (0.43?±?0.24), while the vegetables were in the order of Fe (183.11?±?161.2)?>?Zn (5.38?±?3.50)?>?Ni (3.52?±?1.27)?>?Pb (2.49?±?1.81)?>?Cr (1.46?±?0.51)?>?Co (0.66?±?0.25)?>?Cd (0.36?±?0.15). The bioconcentration factors suggest environmental monitoring for the heavy metals as follows: Cd (0.828), Cr (0.431), Ni (0.558), Co (0.485), and Fe (1.067). Estimated daily intakes were very low for both children and adults except Fe (0.767 mg/kg/day) in children. The population that consume vegetables from the study area were, however, estimated to be safe based on the results obtained from the health risk index, which were all?<?<1. The sodium absorption ratio according to FAO (1985) classifications indicate that the wastewater in the study area is unsuitable for irrigation purposes.  相似文献   

12.
Marine sediments of the Gulf of Mannar (GoM), India are contaminated by potential toxic elements (PTEs) due to anthropogenic activities posing a risk to the existing fragile coral ecosystem and human health. The current study aimed to assess the distribution of PTEs (arsenic—As; cobalt—Co; copper—Cu, molybdenum—Mo; lead—Pb; and zinc—Zn) in marine sediments of different grain size fractions, viz., medium sand (710 μm), fine sand (250 μm), and clay (<63 μm) among the different coastal regions of Pamban, Palk Bay, and Rameswaram coasts of GoM, using grain size as one of the key factor controlling their concentrations. The concentrations of PTEs were measured in the different size fractions of sediment using inductively coupled plasma mass spectrophotometer. The order of accumulation of all PTEs in the three fractions was ranked as Zn > Cu > Pb > As > Co > Mo and in the three locations as Rameswaram > Palk Bay > Pamban. The concentration of PTEs in Palk Bay and Rameswaram coast was significantly different (P?<?0.05), when compared to Pamban coast. Measured geoaccumulation index (I geo) and contamination factor (CF) indicated significant enrichment of Co and Pb from Rameswaram coast when compared to other two coasts. Although the concentration of Co was low but the measured I geo and CF values indicated significant enrichment of this PTE in Rameswaram coast. The increased input of PTEs in the coastal regions of GoM signifies the need to monitor the coast regularly using suitable monitoring tools such as sediments to prevent further damage to the marine ecosystem.  相似文献   

13.
The present study investigated the occurrence of 29 selected micropollutants such as endocrine disrupting compounds (EDCs) and pharmaceuticals and personal care products (PPCPs) in surface waters and wastewaters in Seoul (South Korea) during both dry and wet weather conditions. The study area was selected based on the lack of available information regarding the suspected contamination of rivers/creeks by EDCs and PPCPs in the Seoul region and the presence of a wastewater treatment plant (WWTP), which serves approximately 4.1 million inhabitants and has a design capacity of 1,297?×?103 m3/day. Many target compounds (83 %) were detected in samples collected from wastewater treatment influent/effluent, creek water, and combined sewer overflow (CSO). The total EDC/PPCP concentrations were as follows: WWTP influent (69,903 ng/L)?>?WWTP effluent (50,175 ng/L) >3 creek samples (16,035–44,446 ng/L) during dry weather, and WWTP influent (53,795 ng/L)?>?WWTP bypass (38,653 ng/L) >5 creek samples (15,260–29,113 ng/L) >2 CSO samples (11,109–11,498 ng/L) during wet weather. EDCs and PPCPs were found to be present at high daily loads (65.1 and 69.8 kg/day during dry and wet weather, respectively) in the WWTP effluent. Compound removal by the WWTP varied significantly by compound: caffeine, diclofenac, ibuprofen, naproxen, and propylparaben (>90 %), and acesulfame, DEET, iohexol, iopromide, and iopamidol (<5 %). These findings and literature information support the hypothesis that the efficiency of removal of EDCs and PPCPs is strongly dependent on both removal mechanism (e.g., biodegradation, adsorption to sludge, and oxidation by chlorine) and compound physicochemical properties (e.g., pK a and hydrophobicity).  相似文献   

14.
In this study, residual concentration of organochlorine pesticides (OCPs) in the sediments, prey, and eggs of Bubulcus ibis were measured from three breeding heronries from the Punjab province of Pakistan. Pattern of contamination in eggs followed the order: DDTs > HCHs > heptachlor > aldrin. Overall, pesticide residual concentrations were greater in eggs of cattle egrets collected from heronry on the River Ravi. Among HCHs, ??-HCH was more prevalent in eggs, whereas DDTs followed the order: DDD > DDE > p,p ??-DDT > o,p ??-DDT. Eggshell thinning was detected which showed negative relationship with residual concentration of DDE. In prey samples, residual concentration of POPs followed the order: DDTs > HCHs > dicofol > heptachlor; however, contamination pattern in sediments followed a slightly different order: DDTs > heptachlor > dicofol > HCHs > dieldrin > aldrin. Concentration of ??-HCH was more prevalent in sediments and comparatively greater concentrations of POPs were measured in sediments collected from the River Ravi. Dicofol was found for the very first time in the biological samples from Pakistan, and its concentration was measured as relatively high in eggs from heronry from the River Chenab. Residual concentrations measured in eggs were below the levels that could affect egret populations. Biomagnification of the total OCPs through the food chain was evident in three breeding heronries. The concentration of DDE measured in eggs of the cattle egret suggests the need for monitoring this contaminant in other bird species at different trophic levels.  相似文献   

15.
The content of total arsenic, the inorganic forms: arsenite (As(III)) and arsenate (As(V)), the methylated forms: monomethylarsonic acid and dimethylarsinic acid (DMA), trimethylarsenic oxide, tetramethylarsenonium ion and arsenobetaine was measured in 95 sediment samples and 11 pore water samples from the Baltic Sea near the island of Bornholm at depths of up to 100 m. As(III+V) and DMA were detected in the sediment and As(III+V) was detected in the sediment pore water. Average total As concentration of 10.6?±?7.4 mg/kg dry matter (DM) in the sediment corresponds to previously reported values in the Baltic Sea and other parts of the world. Existing data for on-site measurements of sorption coefficients (Kd) of arsenicals in marine and freshwater sediments show large variability from <1 to >1,000 L/kg. In this work, calculated sorption coefficients (Kd and Koc) for As(III+V) showed significant correlation with depth, dissolved oxygen (DO), salinity and sediment classification; for depths <70 m, salinity <11 %, DO >9 mg/L and sand/silt/clay sediments the Kd was 118?±?76 L/kg DM and for depths >70 m, salinity >11 %, DO?<?9 mg/L and muddy sediments the Kd was 513?±?233 L/kg DM. The authors recommend using the found Kd value for arsenic in marine sediments when conditions are similar to the Baltic Sea. At locations with significant anthropogenic point sources or where the local geology contains volcanic rock and sulphide mineral deposits, there may be significantly elevated arsenic concentrations, and it is recommended to determine on-site Kd values.  相似文献   

16.
In an effort to assess the potential contamination and determine the environmental risks associated with heavy metals, the surface sediments in Liaodong Bay, northeast China, were systematically sampled and analyzed for the concentrations of Cu, Pb, Zn, Cr, Ni, As, and Hg. The metal enrichment factor (EF) and geoaccumulation index (I geo) were calculated to assess the anthropogenic contamination in the region. Results showed that heavy metal concentrations in the sediments generally met the criteria of China Marine Sediment Quality (GB18668-2002); however, both EF and I geo values suggested the elevation of Pb concentration in the region. Based on the effect-range classification (TEL-PEL SQGs), Cu, Pb, Ni, and As were likely to pose environment risks, and the toxic units decreased in the order: Ni?>?Pb?>?Cr?>?Zn?>?As?>?Cu?>?Hg. The spatial distribution of ecotoxicological index (mean-ERM-quotient) suggested that most of the surface sediments were “low–medium” priority zone. Multivariate analysis indicated that the sources of Cr, Ni, Zn, Cu, and Hg resulted primarily from parent rocks, and Pb or As were mainly attributed to anthropogenic sources. The results of this study would provide a useful aid for sustainable marine management in the region.  相似文献   

17.
Concentrations of Cu, Zn, Cd, Pb, Ni, Co, Fe, Mn, and Hg were measured successively in water, sediments, and six macroalgal species belonging to three algal classes during 3 years (2008–2010) from Abu Qir Bay, Alexandria, Egypt: Chlorophyceae (Enteromorpha compressa, Ulva fasciata), Phaeophyceae (Padina boryana), and Rhodophyceae (Jania rubens, Hypnea musciformis, Pterocladia capillacea). The study aimed to assess the bioaccumulation potential of the seaweeds, as well as to evaluate the extent of heavy metal contamination in the selected study site. Metals were analyzed using atomic absorption spectrophotometry coupled with MH-10 hydride system. The obtained data showed that the highest mean concentrations of Cu, Zn, Fe, and Mn were recorded in E. compressa; Cd, Ni, and Hg exhibited their highest mean concentrations in P. boryana, while Pb and Co were found in J. rubens. Abundance of the heavy metals in the algal species was as follow: Fe?>?Mn?>?Zn?>?Pb?>?Ni?>?Co?>?Cu?>?Cd?>?Hg. E. compressa showed the maximum metal pollution index (MPI) which was 11.55. Bioconcentration factor (BCF) for the metals in algae was relatively high with a maximum value for Mn. The Tomlinson pollution load index (PLI) values for the recorded algal species were low, which ranged between 1.00 in P. boryana and 2.72 in E. compressa. Enrichment factors for sediments were low fluctuating between 0.43 for Hg to 2.33 for Mn. Accordingly, the green alga E. compressa, brown alga P. boryana, and red alga J. rubens can be nominated as bioindicators. Based on MPI and PLI indices, Abu Qir Bay in the present study is considered as low-contaminated area.  相似文献   

18.
The objectives of this study were to investigate competitive sorption behaviour of heavy metals (Cd, Cu, Mn, Ni, Pb and Zn) under different management practices and identify soil characteristics that can be correlated with the retention and mobility of heavy metals using 65 calcareous soil samples. The lowest sorption was found for Mn and Ni in competition with the other metals, indicating the high mobility of these two cations. The Freundlich equation adequately described heavy metals adsorption. On the basis of Freundlich distribution coefficient, the selectivity sequence of the metal adsorption was Cu?>?Pb?>?Cd?>?Zn?>?Ni?>?Mn. The mean value of the joint distribution coefficient (K dΣsp) was 182.1, 364.1, 414.7, 250.1, 277.7, 459.9 and 344.8 l kg?1 for garden, garlic, pasture, potato, vegetables, wheat and polluted soils, respectively. The lowest observed K dΣsp in garden soil samples was due to the lower cation exchange capacity and lower carbonate content. The results of the geochemical modelling under low and high metal addition indicated that Cd, Ni, Mn and Zn were mainly retained via adsorption, while Pb and Cu were retained via adsorption and precipitation. Stepwise forward regression analysis showed that clay, organic matter and CaCO3 were the most important soil properties influencing competitive adsorption of Cd, Mn, Ni and Zn. The results in this study point to a relatively easy way to estimate distribution coefficient values.  相似文献   

19.
Intertidal ecosystems are being damaged by anthropogenic activities, particularly in the developing countries. In this study, the load of heavy metals was determined in water, fish, shrimp, and crab collected from four intertidal ecosystems, including coral reef, rocky shore, mangrove forest, and muddy habitat along the Persian Gulf coasts. Generally, the sequence of metal accumulation in the water of coral reef and mangrove forest was Ni > Pb > V > Cd > As > Hg, whereas in muddy habitats and rocky shores, the sequence was Ni > Pb > V > Cd > Hg > As and Ni > V > Pb > As > Hg > Cd, respectively. Water of the coral reef had the highest level of Ni (97.44 μg l?1), Pb (3.92 μg l?1), V (10.42 μg l?1), Cd (3.92 μg l?1), As (1.87 μg l?1), and Hg (0.74 μg l?1). For the most part, the highest concentrations of the studied metals were found in the liver and the gills of Johnius belangerii and the hepatopancreas of Portunus pelagicus and Metapenaus affinis collected from the coral reef ecosystem.  相似文献   

20.
The bioaccumulation and toxicity of arsenate (arsenic (As)(V)) was studied using three cultures of cyanobacterial species—Oscillatoria tenuisa, Anabaena affinis, and Microcystis aeruginosa—that were isolated from a eutrophic reservoir. The As(V) uptake depended on the cyanobacterial species, the growth phase of the cyanobacteria, the duration of exposure, and the initial concentration of As(V). The specific growth rates of the three cultures immediately following the logarithmic phase were 0.033–0.041 L/day when the initial concentration of As(V) was 50 mg/L. These rates were 2.3–3.6 times less than those in the original culture medium without As(V). The rate of intake of As(V) in the logarithmic phase cultures greatly exceeded that in the stationary cultures. The accumulation of As(V) by the three cultures increased rapidly within 1 week from the initial value of 3.23?×?10?2–5.40?×?10?2 to 5.06?×?10?1–6.73?×?10?1 ng/cell in the logarithmic phase. The effective concentrations (EC50) of As(V) for inhibiting the growth of the three cyanobacterial species growth of at 72 h followed the order Oscillatoria tenuisa (3.8 mg/L)?>?A. affinis (2.6 mg/L)?>?M. aeruginosa (1.2 mg/L). The cyanobacterial species that was most sensitive to As(V) was M. aeruginosa. Preliminary results from SEM-map studies suggest most of the As(V) in Microcystis aeruginosa accumulated in the cytoplasm (intercellular), while in O. tenuisa and A. affinis, a large proportion of As(V) bound to the cell wall (extracellular). These differences were understood with reference to the variation among the metabolic properties and morphological characteristics of the cyanobacterial species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号