首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 93 毫秒
1.
利用生物完整性指数评价河流健康状态,对于水环境管理决策具有重要的实践意义。基于大型底栖动物构建生物完整性指数(B-IBI),并评价松花江流域的水生态系统健康状况。在松花江主要干支流设定37个采样点,分别于2016年6、9月进行环境因子和大型底栖动物调查研究。最终从28个候选参数中确定了种类总数、摇蚊种类数、敏感种百分比、Hilsenhoff指数、Marglef指数作为核心参数构建B-IBI。通过0~10赋分法,计算得到了松花江流域全部采样点的生物完整性评价得分。结果显示,松花江流域内60%区域生物状态存在不同程度的损害。另外,B-IBI能够综合反映松花江大型底栖动物群落多样性、生境质量、理化水质等,具有一定的适用性。  相似文献   

2.
利用生物完整性指数评价流域水生态状况,所得结果对水环境管理决策有重要指导意义。以2006年崇明东滩底栖动物监测数据为参照状态数据,利用长江口1991—2019年和杭州湾2004—2019年潮间带底栖动物监测数据构建底栖动物完整性指数(B-IBI),最终从56个候选指标中确定了6个核心指标:Marglef指数、软体动物相对多度、甲壳动物+多毛纲相对多度、ASPT、科级生物指数和捕食者相对多度。B-IBI评价结果显示:优秀等级样本有44个,良好等级72个,中等等级31个,较差等级7个,很差等级4个;杭州湾北岸水生态状况显著优于长江口南岸(P<0.05)。经验证,B-IBI与水质综合污染指数呈极显著相关(P<0.01),能够有效指示研究区域的水生态状况。  相似文献   

3.
通过2018年对常州市武南区域26个点位的水质和底栖动物的调查及分析,并基于底栖动物完整性指数(B-IBI)对该区域水生态健康状况进行评价。结果表明:武南区域中部及京杭运河以北氮、磷污染严重。该区域共发现底栖动物78种,隶属3门7纲21目36科62属,物种数和个体密度均表现出显著的时空变化性,耐污种霍普水丝蚓(Limnodrilus hoffmeisteri)为优势种。该区域水生态健康评价等级以一般和中为主。B-IBI与TN、TP存在显著相关性,NH3-N与底栖动物的群落结构显著相关。氮、磷污染是影响底栖动物多样性及水生态健康评价等级提升的重要因素。  相似文献   

4.
大型底栖动物是生态环境监测和评估的主要目标生物类群之一。环境DNA宏条形码技术的发展为提高底栖动物多样性监测的通量、精准性、标准化程度提供了新的机遇,但该方法在我国尚未有流域尺度的应用先例,其结果的可靠性和对生态环境健康状况的指示性有待检验。率先将环境DNA宏条形码技术用于太湖流域65个点位的底栖动物监测和流域生态健康评价,并与同步进行的形态学监测结果进行了比较。结果表明:①环境DNA方法能检出更多的底栖动物类群,在科、属、种水平上检出的分类单元数分别是形态学监测结果的106%、132%、155%;②基于环境DNA技术的检测方法能够很好地识别形态学监测结果中的优势物种,检出的科级、属级分类阶元能够覆盖形态学监测结果中90%以上的生物量和个体数,同时包含60%以上的物种数;③两种方法对同一物种的检出频次显著相关(R2>0.7,P<0.0001),总体检出一致率达72.3%;④在底栖动物完整性指数(B-IBI)方面,环境DNA方法与形态学方法的计算结果显著相关(R2=0.235,P<0.0001),94%的点位的B-IBI等级划分误差在1级以内,且两种方法的计算结果在底栖动物完整性的流域空间格局描绘上高度重合。综上所述,环境DNA宏条形码技术在太湖流域底栖动物群落监测和评价中的整体应用结果表明,环境DNA监测方法结果可靠,将其进一步规模化应用有望显著提高我国水生态系统生物监测结果的准确性和生态健康评价的技术水平。  相似文献   

5.
应用鱼类完整性指数F-IBI评价巢湖流域的主要河流健康   总被引:2,自引:0,他引:2  
保护河流健康是河流生态管理的重要目标,鱼类对维护河流生态系统健康的作用重要且不可替代。依据2013年10月巢湖53个河流采样点的鱼类调查数据,采用假设参照值法构建鱼类生物完整性指数(F-IBI)的参照系统,进而评价河流健康状况。基于29个候选生物参数,通过参数与环境因子间的相关性分析、参数间的冗余分析及其分布范围分析,确定F-IBI由鱼类总物种数、鲤科鱼类物种数百分比、中下层鱼类物种数百分比、肉食性鱼类数量百分比、产粘性卵鱼类数量百分比和耐受性鱼类数量百分比等6个参数构成。利用比值法统一各参数量纲,F-IBI值即为各构成参数比值的累加,进而评价河流水生态健康的等级,其中亚健康的采样点占16.98%,健康状况一般的采样点占50.94%,健康状况较差的采样点占32.08%。此外,影响巢湖主要河流F-IBI的重要水环境变量是叶绿素a。对重点污染区域,修复水生态系统和制定科学合理的策略,是恢复巢湖流域生态健康的重要手段。  相似文献   

6.
成都市河流生态健康评价   总被引:2,自引:2,他引:0  
研究以成都市域内河流为研究对象,通过采样分析得到水质、生境状况、浮游藻类、底栖动物等相关指标,利用综合指标体系法,评价成都市域内河流生态系统健康状况,并结合成都市人口、土地利用、地区生产总值等因素分析人类活动与河流生态健康的关系。结果表明:成都市河流浮游藻类以硅藻和绿藻为主,部分中下游采样点出现以蓝藻为主的情况;底栖动物以指示有机污染的颤蚓科出现的频率最高,约48%的采样点以颤蚓科为优势种;约74%的河流生态健康状况为"差"或"很差",河流生态健康状况整体呈现中上游优于下游、城市周边优于市区的特征;人口密度、人类活动用地比例与河流中氨氮呈显著正相关,人类活动会显著影响河流生态系统健康。  相似文献   

7.
基于大型无脊椎动物完整性的赤水河健康评价体系构建   总被引:1,自引:0,他引:1  
作为长江上游珍稀鱼类国家自然保护区的核心区,赤水河流域水系的健康状况虽颇受关注,但相关评价工作却较少。笔者结合现场调查(2016年)和历史数据(2007年),初步构建基于大型无脊椎动物群落的健康评价体系,对赤水河干流和部分支流的不同季节(春季和秋季)和不同河段(上中下游)的健康状况进行评估。指标筛选结果显示:赤水河上游河段在春季和秋季分别包括6、2个核心参数,中游河段分别包括5、4个,下游包括3、2个核心参数。通过四分法将健康状态划分为4个等级:健康、亚健康、一般和不健康。从整体上看,赤水河处于亚健康状态,且春季和秋季河流不同采样点健康状况有所差异,春季健康状况好于秋季。回归分析显示,BOD_5、COD_(Mn)以及NH~+_4-N是影响赤水河健康的主要环境因子。研究所构建的B-IBI评价指标较好地评估了赤水河的健康状况,可作为赤水河流域水体环境监测的有效手段之一。  相似文献   

8.
广西贝江大型底栖动物群落结构时空分布特征   总被引:1,自引:0,他引:1  
为了解贝江大型底栖动物群落结构特征并对其水质进行生物学评价,于2015年1、8月对贝江流域17个采样点进行了调查,共采集大型底栖动物146个分类单元,隶属于8纲20目52科,其中昆虫纲所占比例最高(86.99%),软体动物次之(6.16%)。贝江底栖动物群落结构存在季节性差异,群落数量特征和结构复杂性均表现为冬季夏季。无度量多维标定排序和ANOSIM分析发现,贝江流域冬季和夏季底栖动物群落组成存在显著差异(r=0.26,P0.001)。群落相似性分析表明,贝江底栖动物存在显著的空间差异,整个流域可以分为2组,组1基本分布在自然河段,组2主要包括电站采样点和贝江下游采样点,各组间差异显著(P0.01)。底栖动物功能摄食类群以集食者(55%)和撕食者为主(16%),其次为滤食者(14%)和捕食者(11%),刮食者(4%)所占比例较小。水质评价结果显示,Shannon-Wiener生物多样性指数(H′)评价贝江水质为轻污-清洁。Hilsenhoff生物指数(BI)评价贝江流域水质属于清洁,与实际水质情况最接近。总体上,贝江流域自然河段底栖动物群落结构复杂多样,整体水质清洁。  相似文献   

9.
于2004—2010年5月对西苕溪流域20个参照点,5个中度干扰点以及2个重度干扰点的底栖动物进行了调查,共鉴定出74科190属226个种;受干扰后,底栖动物群落物种丰富度、EPT物种丰富度、Shannon-wiener多样性指数和B-IBI指数显著下降,BI指数显著升高。CCA分析结果表明,参照、中度和重点干扰样点的底栖动物群落差异明显。城镇化引起的溪流水温上升、营养盐升高、泥沙输入量增多和堤岸固化是导致溪流底栖动物群落退化的主要原因。  相似文献   

10.
开展水生态环境质量评价方法研究,建立合适的河流健康评价体系是解决河流健康问题的前提和实现河流健康管理的重要手段。黄河自上而下生态环境现状迥异,水生态环境脆弱,寻求一种或多种适合黄河流域水生态环境质量的评价方法具有重要意义。该文介绍了国内外水生态环境质量评价方法及在黄河流域的应用进展,总结了鱼类生物完整性指数(F-IBI)、底栖无脊椎动物完整指数(B-IBI)、着生藻类生物完整性指数(P-IBI)及水生态环境质量综合评价法的主要指标,以及黄河流域不同区域生物种类的评价指标,分析了各评价方法优缺点及应用范围,并根据目前研究基础评述了黄河流域水生态环境质量评价存在的问题,对黄河流域水生态环境质量评价方法、指示生物的选择及水生态环境质量综合评价法的研究等提出了具体建议。  相似文献   

11.
In the Wei River basin, the ecosystem is gradually deteriorating due to the rapid growth of the population and the development of economies. It is thus important to assess the ecosystem health and take measures to restore the damaged ecosystem. In this study, an index of biotic integrity (IBI) for fish was developed to aid the conservation of the ecosystem based on a calibration data set. An index of water and habitat quality (IWHQ) was calculated based on environmental variables and habitat quality (QHEI) to identify the environmental degradation in the studied sites. The least degraded sites (IWHQ?≤?2; W1, W5, W10, W12, W13, W14, and W16) were chosen as the reference sites. Six metrics that are sensitive to environmental degradation were utilized to differentiate the reference and the impaired sites using statistical methods. These metrics included the number of species (P1), the total biomass (P2), the number of Cobitidae species (P8), the proportion of species in the middle and low tiers (P10), the proportion of individuals that were classified as sensitive species (P25), and number of individuals in the sample (P39). A continuous scoring method was used to score the six metrics, and four classes were defined to characterize the ecosystem health of the Wei River basin. The fact that the overall IBI scores were negatively correlated with the index of environmental quality (IWHQ) based on the validation data set indicated that the index should be useful for biomonitoring and the conservation of biodiversity. According to the results, more than half of the sites were classified as poor or very poor. The ecosystem health in the Wei River was better than that in the Jing River and the Beiluo River, and this study will be a great reference for water resources management and ecosystem restoration in the Wei River basin.  相似文献   

12.
The Maryland Department of Natural Resources is conducting the Maryland Biological Stream Survey, a probability-based sampling program, stratified by river basin and stream order, to assess water quality, physical habitat, and biological conditions in first through third order, non-tidal streams. These streams comprise about 90% of all lotic water miles in the state. About 300 sites (75 m segments) are being sampled during spring and summer each year. All basins in the state will be sampled over a three-year period, 1995-97. MBSS developments in 1995-96 included (1) an electrofishing capture efficiency correction method to improve the accuracy of fish population estimates, (2) two indices of biotic integrity (IBI) for fish assemblages to identify degraded streams, and (3) land use information for catchments upstream of sampled sites to investigate associations between stream condition and anthropogenic stresses. Based on fish IBI scores at 270 stream sites in six basins sampled in 1995, 11% of non-tidal stream miles in Maryland were classified as very poor, 15% as poor, 24% as fair, and 27% as good. IBIs have not yet been developed for stream sites with catchment areas less than 120 hectares (23% of non-tidal stream miles). IBI scores declined with stream acid neutralizing capacity (ANC) and pH, an association that was also evident for fish species richness, biomass, and density. Low IBI scores were associated with several measures of degraded stream habitat, but not with local riparian buffer width. There was a significant negative association between IBI scores and urban land use upstream of sampled sites in the only extensively urbanized basin assessed in 1995. Future plans for the MBSS include (1) identifying all benthic macroinvertebrate samples to genus, (2) developing benthic macroinvertebrate, herpetofaunal, and physical habitat indicators, and (3) enhancing the analysis of stream condition-stressor associations by refining landscape metrics and using multi-variate techniques.  相似文献   

13.
The level of sampling effort required to characterize fish assemblage condition in a river for the purposes of bioassessment may be estimated via different approaches. However, the goal with any approach is to determine the minimum level of effort necessary to reach some specific level of confidence in the assessment. In the Ohio River, condition is estimated and reported primarily at the level of pools defined by lock and dam structures. The goal of this study was to determine the minimum level of sampling effort required to adequately characterize pools in the Ohio River for the purpose of bioassessment. We followed two approaches to estimating required sampling effort using fish assemblage data from a long-term intensive survey across a number of Ohio River pools. First, we estimated the number of samples beyond which variation in the multimetric Ohio River Fish Index (ORFIn) leveled off. Then, we determined the number of samples necessary to collect approximately 90% of the fish species observed across all samples collected within the pool. For both approaches, approximately 15 samples were adequate to reduce variation in IBI scores to acceptable levels and to capture 90% of observed species in a pool. The results of this evaluation provide a basis not only for the Ohio River Valley Water Sanitation Commission (ORSANCO) but also states and other basin commissions to develop sampling designs for bioassessment that ensure adequate sampling of all assessment units.  相似文献   

14.
Stream water chemistry were analyzed across Vatinsky Egan River Catchment (West Siberia). The objective of the study is to reveal the spatial and seasonal variations of the water quality and to assess the anthropogenic chemical inputs into the river system. Stream chemistry were monitored in 24 sampling sites for a period extended from January 2002 to December 2005. Spatial distribution of constituents in the Vatinsky Egan River basin indicated pollution from non-point sources associated with oil development. Data revealed that ion concentrations of river waters are usually negatively correlated with stream discharge. The major spatial variations of the hydrochemistry are related to the salinity. Chloride exhibited wide and high concentration range. A comparison with another rivers of West Siberia reveals that Vatinsky Egan River is the most saline and regional impacts further out in the watershed. The salinity of the river water increases substantially as it crosses Samotlor oil field. Many Cl(-) concentrations in the middle and lower parts of the catchment exceed the world average river values by one or more orders of magnitude. For 38% of sampling events, total petroleum hydrocarbons (TPH) concentrations were above the recommended water quality standards.  相似文献   

15.
The Sediment Quality Triad (SQT) consists of complementary measures of sediment chemistry, benthic community structure, and sediment toxicity. We applied the SQT at 20 stations in the tidal portion of the Anacostia River from Bladensburg, MD to Washington, DC to establish a baseline of conditions to evaluate the effects of management actions. Sediment toxicity was assessed using 10-day survival and growth tests with the freshwater amphipod, Hyalella azteca and the midge, Chironomus dilutus. Triplicate grabs were taken at each station for benthic community analysis and the Benthic Index of Biotic Integrity (B-IBI) was used to interpret the data. Only one station, #92, exhibited toxicity related to sediment contamination. Sediments from this station significantly inhibited growth of both test species, had the highest concentrations of contaminants, and had a degraded benthic community, indicated by a B-IBI of less than 3. Additional sediment from this station was tested and sediment toxicity identification evaluation (TIE) procedures tentatively characterized organic compounds as the cause of toxicity. Overall, forty percent of the stations were classified as degraded by the B-IBI. However, qualitative and quantitative comparisons with sediment quality benchmarks indicated no clear relationship between benthic community health and contaminant concentrations. This study provides a baseline for assessing the effectiveness of management actions in the Anacostia River.  相似文献   

16.
The Chesapeake Bay benthic index of biotic integrity (B-IBI) was developed to assess benthic community health and environmental quality in Chesapeake Bay. The B-IBI provides Chesapeake Bay monitoring programs with a uniform tool with which to characterize bay-wide benthic community condition and assess the health of the Bay. A probability-based design permits unbiased annual estimates of areal degradation within the Chesapeake Bay and its tributaries with quantifiable precision. However, of greatest interest to managers is the identification of problem areas most in need of restoration. Here we apply the B-IBI to benthic data collected in the Bay since 1994 to assess benthic community degradation by Chesapeake Bay Program segment and water depth. We used a new B-IBI classification system that improves the reliability of the estimates of degradation. Estimates were produced for 67 Chesapeake Bay Program segments. Greatest degradation was found in areas that are known to experience hypoxia or show toxic contamination, such as the mesohaline portion of the Potomac River, the Patapsco River, and the Maryland mainstem. Logistic regression models revealed increased probability of degraded benthos with depth for the lower Potomac River, Patapsco River, Nanticoke River, lower York River, and the Maryland mainstem. Our assessment of degradation by segment and water depth provided greater resolution of relative condition than previously available, and helped define the extent of degradation in Chesapeake Bay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号