首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
基于京津冀地区2016年PM_(2.5)浓度监测数据和MOD04的10 km分辨率气溶胶数据,结合时空位置,建立PM_(2.5)回归模型,使用时空回归克里格方法对京津冀地区进行PM_(2.5)时空插值,对比研究时空回归克里格与只使用监测站数据的普通时空克里格方法的时空插值结果。结果表明,两种方法的插值结果时空趋势相同,京津冀地区东南部PM_(2.5)浓度较高,夏秋两季浓度低于春冬两季;时空回归克里格插值结果的均方根误差为26.1,时空克里格插值结果均方根误差为28.3,即兼顾时空趋势并结合气溶胶数据的时空回归克里格插值精度提高了约8%。  相似文献   

2.
对2014—2016年齐齐哈尔市PM_(2.5)与PM_(10)质量浓度的时间变化特征进行简要分析,并探究PM_(2.5)/PM_(10)以及PM_(2.5)与PM_(10)的相关性。结果表明:2014—2016年齐齐哈尔的PM_(2.5)与PM_(10)的年均质量浓度分别为36.7、62.9μg/m~3,且呈逐渐下降趋势;冬季的PM_(2.5)与PM_(10)浓度最高,秋季次之,春季与夏季相对较低;2014—2016年PM_(2.5)与PM_(10)质量浓度月变化趋势基本相同,整体呈现2—6月逐渐下降,9—11月逐渐上升的规律;PM_(2.5)与PM_(10)质量浓度的日变化均呈双峰现象;对PM_(2.5)与PM_(10)进行线性拟合,相关系数为0.896 3。同时,残差分析也说明两者拟合情况良好,四季相关系数为r_(秋季)(0.982 2)r_(冬季)(0.964 4)r_(夏季)(0.943 9)r_(春季)(0.829 6);2014—2016年PM_(2.5)/PM_(10)平均值为55.27%,大气颗粒物PM_(2.5)的贡献率高达一半以上。  相似文献   

3.
采用普通克里金(Kriging)、反距离加权(IDW)、趋势面、协同克里金(Co-kriging)插值和基于反距离加权的克里金插值方法对长沙市某时刻的PM_(2.5)浓度空间插值比较,结果表明:反距离加权和趋势面插值的结果与实际情况相差较远;普通克里金和协同克里金插值虽能反映出PM_(2.5)浓度分布一定的空间结构,但精度有待提高,且运行速度较慢;前4种方法效果不好的主要原因是由于长沙市PM_(2.5)浓度监测站点稀少。而基于反距离加权的克里金插值方法结合了2种模型的优点,其结果较为准确地分析长沙市PM_(2.5)浓度分布特征,误差远小于其他方法,且具有平滑性好、运行速度相对较快等优点。  相似文献   

4.
2014年12月29—30日,青岛市发生了一次空气污染过程,利用环境一号卫星CCD遥感影像数据和实测PM_(2.5)浓度数据,分析了该过程前后5 d的实测PM_(2.5)浓度与环境一号卫星CCD遥感影像的DN值之间的相关性,分别按日期和区域建立了反演模型。结果表明,按日期拟合反演模型相关系数为0.02~0.51,按区域拟合反演模型相关系数为0.01~0.80,总体来说,区域拟合结果较好。  相似文献   

5.
为深入了解邢台市PM_(10)、PM_(2.5)浓度变化情况和气流后向轨迹,对邢台市2013—2016年环境大气颗粒污染物监测数据进行了分析,同时利用HYSPLIT模型计算出逐日72 h后向气流轨迹。结果表明:邢台市的PM_(10)和PM_(2.5)质量浓度在2013—2016年间呈逐年下降趋势,PM_(10)和PM_(2.5)质量浓度高值出现在冬季(296μg/m~3和192μg/m~3),最低值出现在夏季(140μg/m~3和80μg/m~3),PM_(10)和PM_(2.5)质量浓度在日变化上均呈"双峰双谷"型分布;后向轨迹的季节聚类分析表明,春季大气颗粒物污染以粒径2.5~10μm的颗粒污染物为主,夏季、秋季和冬季的大气颗粒物污染以PM_(2.5)为主;逐日聚类分析表明,在路径为西北偏西向的、途经多个沙源地的气流影响下,邢台市的PM_(10)和PM_(2.5)质量浓度处于一个相对高值;来源于偏南向的气流由于化合反应,污染物积聚导致PM_(10)、PM_(2.5)质量浓度也处于相对高值;在来源于西北向和偏北向的、水汽含量相对较低的气流影响下,邢台市的PM_(10)、PM_(2.5)质量浓度出现一个明显的下降。  相似文献   

6.
选取荒漠草原无林地的PM_(2.5)、PM_(10)浓度以及气象因子数据,对颗粒物浓度的时间变化特征及其与气象因子的关系进行分析。结果表明:(1)1月的PM_(2.5)、PM_(10)月平均浓度最高,7月的PM_(2.5)与PM_(10)达到最低。季节尺度上PM_(2.5)、PM_(10)浓度变化为由大到小顺序依次为冬季秋季春季夏季。(2)风速≤4.0 m/s时,随着风速增加,PM_(2.5)、PM_(10)浓度不断降低;当风速4.0 m/s时,PM_(2.5)、PM_(10)浓度随风速增加而增加。PM_(2.5)、PM_(10)浓度与温度负相关。相对湿度≤50%时,随着相对湿度增加,PM_(2.5)、PM_(10)浓度呈增加趋势;相对湿度50%时,随着空气湿度增加,PM_(2.5)、PM_(10)浓度呈降低趋势。随着大气气压上升,PM_(2.5)与PM_(10)浓度随之增加。(3)不同季节的气象因子对PM_(2.5)、PM_(10)影响存在差异。  相似文献   

7.
BTPM-AS1PM_(2.5)全自动重量法监测仪是一种根据PM_(2.5)手工重量法原理设计的PM_(2.5)自动监测仪器,能够实现样品采集、滤膜平衡、滤膜称重等环节的自动化。采用线性回归分析法对PM_(2.5)全自动重量法监测仪器的监测结果与PM_(2.5)连续自动监测仪器、手工标准方法进行比对分析,讨论了该原理仪器的流量准确性、滤膜平衡效果、天平稳定性。结果显示:PM_(2.5)全自动重量法仪器监测结果与PM_(2.5)连续自动监测仪器、手工重量法监测结果的相关系数为0.927 2~0.994 1,监测结果之间具有较高的一致性,并且其样品采集、滤膜平衡、滤膜称重等关键环节的主要技术指标能够满足中国PM_(2.5)手工标准测定方法的相关要求。  相似文献   

8.
杭州城区PM2.5和PM10污染特征及其影响因子分析   总被引:1,自引:0,他引:1  
利用2013年12月—2014年11月杭州城区空气质量监测站PM_(2.5)、PM_(10)浓度值结合气象、道路、人口数据以及站点周边绿地信息分析PM_(2.5)、PM_(10)浓度时空特征及其影响因子。结果表明,杭州城区各监测站PM_(2.5)和PM_(10)晴天日浓度变化趋势基本一致,PM_(2.5)比PM_(10)污染严重;晴天日PM_(2.5)、PM_(10)浓度值与对应的温度(-0.463,-0.281)、风速(-0.305,-0.332)呈负相关,与湿度(0.257,0.239)呈正相关;晴天有风时,杭州市区PM_(2.5)、PM_(10)污染北部重于南部,东部重于西部,浓度极高值集中在风速小于5 m/s时段,且风速越小浓度值越高;温度为12℃左右,湿度在60%~80%时,颗粒物污染最严重;交通高峰时各监测站PM_(2.5)、PM_(10)污染程度存在明显差异。相关性分析表明,PM_(2.5)、PM_(10)污染程度与道路密度成正比,与缓冲区内绿地覆盖面积成反比。PM_(2.5)污染程度与人口密度成正比,PM_(10)污染与人口密度成反比。  相似文献   

9.
基于聚类分析的颗粒物监测网络优化研究   总被引:1,自引:0,他引:1  
为了优化香港环境监测网络,收集香港14个监测站2011年1月1日至2015年11月30日的颗粒物PM_(2.5)、PM_(10)的小时数据进行统计分析。对PM_(2.5)进行聚类,并利用日均浓度变化图进行验证,结果表明,可将监测站分为4类(A、B、C、D类),A类位于城市郊区,B类则位于港口附近,且A、B类的PM_(2.5)日变化特征均呈现双峰型分布,峰值分别出现在09:00和21:00。对PM_(10)进行类似分析结果表明,监测站同样可以分为4类,A类位于九龙区,B类则位于港口附近,而且A、B类的PM_(10)日变化双峰分别出现在11:00和20:00左右。说明污染源头及地形的相似致使某些监测站颗粒物浓度的变化出现相同的趋势,导致监测设备的浪费和管理的冗余。建议建立更高效的空气管理系统,将冗余设备转移到其他地区,扩大空气监控区域。对PM_(2.5)/PM_(10)聚类结果表明,将监测站分为4类,B类均属于路边站,C类则位于居民区。同时还发现同类监测站PM_(2.5)/PM_(10)数值变化相同,并且可以用其中一个站的PM_(2.5)和PM_(10)浓度及另一个站的PM_(2.5)或PM_(10)浓度预测PM_(2.5)或PM_(10)浓度,为优化监测资源提供了一种新的思路。  相似文献   

10.
郑州市PM2.5浓度时空分布特征及预测模型研究   总被引:2,自引:2,他引:0  
利用统计学原理和GIS技术,对郑州市2013年8月17—12月31日期间PM2.5浓度时空分布特征进行分析,同时结合气象资料与前一日污染数据,建立人工神经网络反向传播算法模型(BP-ANN)和多元线性回归模型用于该市细颗粒物污染的短期预测。结果表明,郑州市PM2.5浓度日变化呈单峰模式,随逆温现象的发生和交通的密集于上午11:00达到峰值,午后逐步下降。在工作日、周末与国庆节的对比中,国庆节期间颗粒物污染浓度高出平日32.8%,表明人为活动的加剧影响PM2.5的排放;周末与工作日期间无显著差异。在空间分布上,金水区、管城回族区污染最为严重,工业燃煤、地铁施工等源排放是造成污染的主要原因;位于远郊的岗里水库,受秸秆焚烧和市区污染输送等影响,PM2.5浓度亦维持较高水平。最后,研究将所构建的BP-ANN预测模型和多元线性回归模型对比,结果发现两模型在建模阶段预测值与真实值的拟合一致性指标分别为0.944、0.918,均方根误差分别为59.788、70.611;验证阶段拟合一致性指标分别为0.854、0.794,平均绝对误差分别为25.298、32.775,表明BP-ANN模型在预测郑州市PM2.5污染过程中更具优势。  相似文献   

11.
在对淄博市19个空气质量监测站点监测数据进行分析后,提出了一种基于机器学习的复合模型——灰色关联度分析(GRA)-改进的完备总体经验模态分解(ICEEMD)-长短期记忆网络(LSTM)模型。通过分析淄博市2019年大气污染物和气象数据,选用LSTM模型预测PM2.5浓度。由于传统单一模块机器学习模型具有训练时间较长和预测精度较低的问题,提出了复合LSTM模型。该模型由3部分组成:GRA,用于PM2.5浓度影响因素变量筛选;ICEEMD,用于PM2.5分解、分量筛选和原始大气污染物及气象数据处理;LSTM,用于PM2.5浓度预测。预测结果表明:淄博市中部丘陵地带PM2.5浓度高于南部山区和北部平原,东部高于西部;淄博市逐月PM2.5浓度呈“U”形分布,1月最高,8月最低;淄博市PM2.5浓度受PM10和CO影响较大,受湿度和温度影响较小。对比单一LSTM模型和GRA-LSTM模型,GRA-ICEEMD-LSTM模型...  相似文献   

12.
利用Spearman秩相关系数法、污染日历图、浓度分析法和CMAQ预测模型研究了达州市城区2015—2019年空气质量状况。结果表明:2015—2019年,达州市城区O_3浓度变化趋势为显著上升(P0.05),季度变化明显,8月易发生因O_3超标导致的轻度污染状况;CO年均值变化趋势为显著降低(P0.05);NO_2年均值呈上升趋势,但尚未达到显著水平(P0.05);SO_2、PM_(10)和PM_(2.5)年均值呈下降趋势,但变化趋势不明显(P0.05)。2019年,1月和12月污染最重,PM_(2.5)超标是主因,PM_(10)和PM_(2.5)年均值达标形势严峻,全年一半以上天数的PM_(2.5)浓度超过年均值二级标准限值,PM_(10)也近半;NO_2年均值达标形势严峻,全年212 d超过年均值二级标准限值。CMAQ模型对不同污染指标的预测准确率不同,预测PM_(2.5)浓度、首要污染物和空气质量等级时的准确率不及人工预测,预测AQI时的准确率高于人工预测,更多污染指标的预测比较还有待进一步研究。  相似文献   

13.
通过图像预测PM2.5浓度的准确性,在很大程度上取决于模型所选用的特征参数。为丰富特征参数的表达,设计了一种基于图像传统特征与深度特征充分融合的PM2.5浓度预测方法。首先,根据不同PM2.5浓度下的成像差异,选定图像感兴趣区域,解决图像尺寸过大导致的模型运算效率较低问题。然后,针对所选取的局部图像,利用传统图像处理方法手动设计并提取图像浅表视觉特征,同时利用卷积神经网络自动提取图像深层语义特征。最后,将两种特征融合,交由卷积神经网络的全连接层实现对PM2.5浓度的回归预测。预测误差比对结果显示,相比使用单种特征,使用融合特征能够有效提高模型的预测性能。  相似文献   

14.
为深入研究PM2.5和PM10质量浓度异常“倒挂”现象的成因及影响,在苏州市相城区国控点开展比对监测分析,回顾性分析了2016—2020年苏州全部国控点颗粒物浓度数据。苏州市相城区国控点PM2.5浓度的比对分析结果表明:该国控点频繁出现PM2.5浓度高于其他国控点PM2.5浓度和高于该站点PM10浓度(“倒挂”率高达34%)的“双高”现象,PM2.5平均浓度比其他9个国控点高12.5%~37.2%,比位于同一站点的备用监测仪器(“倒挂”率为0)高38.1%。2016—2020年,苏州全部国控点“倒挂”时间的总体趋势都是逐年递增,且集中发生在相对湿度较高的20:00至次日07:00。这5年间各国控点PM2.5浓度异常偏高导致的异常“倒挂”现象对全市年均浓度产生的正误差分别为1.6%、2.8%、6.0%、6.2%和4.1%,基本呈现出逐年递增的趋势。上述结果表明:苏州PM2.5浓度偏高是由动态加...  相似文献   

15.
利用山西省11个地级市大气环境监测站的PM2.5、PM10和O3浓度数据,分析了2015—2020年山西省PM2.5、PM10和O3浓度时空变化特征,采用空间计量模型和岭回归方法,分析了空气污染对公众健康的空间影响。结果表明:PM2.5和PM10年均质量浓度总体下降,两者在2017年最高,2020年最低;O3年均浓度总体增加。在季节尺度上,PM2.5和PM10质量浓度在冬季的12月和1月最高,夏季的8月最低;O3浓度在6月最高。空间上,相较2015年,2020年山西省各地级市PM2.5污染程度均有改善,其中长治改善效果最好;2020年山西各地级市PM10污染兼有加重和减轻的情形,所有地级市PM2.5和PM10污染水平均超过国家二级污染浓度限值;2020年山西多数地级市O3浓度升高。山西公众健康水平具有明显的空间离散特征,PM2.5和PM10浓度的局部空间自相关特征高度一致,呈现"南高北低"的格局,O3浓度分布呈"南部高,中北部低"的格局。大气环境质量和经济发展水平均对医疗机构诊疗人数和健康体检人数的变化有正向影响,每万人卫生技术人员数量和公共财政支出比例对公众健康均有负向影响,其中经济发展水平和大气环境质量的影响最显著。山西省PM2.5治理取得一定成效,但大部分城市PM2.5和PM10达标率较低,O3浓度有持续升高的趋势,PM10和O3污染改善缓慢,深度减排仍面临挑战。PM2.5和PM10是危害山西公众健康的主要大气污染物,未来需要加强PM2.5、PM10和O3的精细化管理及协同治理。  相似文献   

16.
基于2016—2020年台州市区大气污染物监测数据及气象观测资料,分析了台州市区PM2.5和O3的污染特征及受气象因素影响情况,并探究了不同季节下的PM2.5浓度和O3浓度的相关性及相互作用关系。2016—2020年,台州市区PM2.5年均浓度和超标天数呈显著下降趋势,O3-8 h年均浓度和超标天数总体呈上升趋势。PM2.5浓度在冬季最高,且易发生超标;O3浓度在春、夏、秋季均较高,且均会发生超标。通过相关性分析可知:PM2.5浓度与气温、相对湿度、风速、降水量呈负相关,与大气压呈正相关;O3浓度与气温、风速呈正相关,与相对湿度、降水量呈负相关。不同季节下的PM2.5浓度与O3浓度均呈正相关,两者存在协同增长。在春、夏、秋季,二次PM2.5在总PM2.5中的占比随着O3  相似文献   

17.
The temporal and spatial trends in the variability of PM10 and PM2.5 from 2010 to 2015 in the metropolitan area of Lima-Callao, Peru, are studied and interpreted in this work. The mean annual concentrations of PM10 and PM2.5 have ranges (averages) of 133–45 μg m?3 (84 μg m?3) and 35–16 μg m?3 (26 μg m?3) for the monitoring sites under study. In general, the highest annual concentrations are observed in the eastern part of the city, which is a result of the pattern of persistent local winds entering from the coast in a south-southwest direction. Seasonal fluctuations in the particulate matter (PM) concentrations are observed; these can be explained by subsidence thermal inversion. There is also a daytime pattern that corresponds to the peak traffic of a total of 9 million trips a day. The PM2.5 value is approximately 40% of the PM10 value. This proportion can be explained by PM10 re-suspension due to weather conditions. The long-term trends based on the Theil-Sen estimator reveal decreasing PM10 concentrations on the order of ?4.3 and ?5.3% year?1 at two stations. For the other stations, no significant trend is observed. The metropolitan area of Lima-Callao is ranked 12th and 16th in terms of PM10 and PM2.5, respectively, out of 39 megacities. The annual World Health Organization thresholds and national air quality standards are exceeded. A large fraction of the Lima population is exposed to PM concentrations that exceed protection thresholds. Hence, the development of pollution control and reduction measures is paramount.  相似文献   

18.
Ambient concentrations of PM2.5 and PM10 are of concern with respect to effects on human health and environment. Increased levels of mortality and morbidity have been associated with respirable particulate air pollution. In India, it is not yet mandatory to monitor PM2.5 levels therefore very limited information is available on PM2.5 levels. To understand the fine particle pollution and also correlate with PM10 which are monitored regularly in compliance with ambient air quality standards. This study was carried out to monitor PM2.5, PM10, and NO2 for about one year in a residential cum commercial area of Mumbai city with a view to understand their correlation. The average PM2.5 concentration at ambient and Kerbsite was 43 and 69 μg/m3. The correlation coefficients between PM2.5 and PM10 at ambient and Kerbsite were 0.83 and 0.85 respectively thus indicating that most of the PM2.5 and PM10 are from similar sources. TSP, PM10 levels exceeded Central Pollution Control Board(CPCB) standard during winter season. PM2.5 levels also exceeded 24 hourly average USEPA standard during winter season indicating unhealthy air quality.  相似文献   

19.
分析2012年采暖季和非采暖季郑州市、洛阳市和平顶山市大气细颗粒物(PM_(2.5))样品中22种无机元素含量和污染特征,采用富集因子法、因子分析法研究当地PM_(2.5)中无机元素来源。结果表明:3个城市PM_(2.5)中无机元素总量在采暖季均高于非采暖季,不同季节占PM_(2.5)质量浓度的比例为1.7%~3.6%。Al、Na、Ca等地壳元素在PM_(2.5)中占比与PM_(2.5)浓度呈负相关关系,而Zn、Pb、Cu等人为源元素的占比随PM_(2.5)浓度增加无明显下降趋势。3个城市PM_(2.5)中Se、Cd、Br的富集因子高于1 000,Pb、Zn、Cu的富集因子为100~1 000,Co、Sc、Cr、Ni、As、Mn、Ba的富集因子为10~100,说明这些元素主要来源于人为源。13种人为源元素质量浓度在22种元素中占比为18.9%~26.3%,K、Fe、Ca、Al等4种元素占比为67.9%~76.1%。因子分析结果表明:3个城市无机元素来源组成有很大相似性,主要来源于燃煤、机动车、扬尘和建筑尘等,但Ni、Co、Sr、Ba还有来自其他排放源的贡献。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号