首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
选取荒漠草原无林地的PM_(2.5)、PM_(10)浓度以及气象因子数据,对颗粒物浓度的时间变化特征及其与气象因子的关系进行分析。结果表明:(1)1月的PM_(2.5)、PM_(10)月平均浓度最高,7月的PM_(2.5)与PM_(10)达到最低。季节尺度上PM_(2.5)、PM_(10)浓度变化为由大到小顺序依次为冬季秋季春季夏季。(2)风速≤4.0 m/s时,随着风速增加,PM_(2.5)、PM_(10)浓度不断降低;当风速4.0 m/s时,PM_(2.5)、PM_(10)浓度随风速增加而增加。PM_(2.5)、PM_(10)浓度与温度负相关。相对湿度≤50%时,随着相对湿度增加,PM_(2.5)、PM_(10)浓度呈增加趋势;相对湿度50%时,随着空气湿度增加,PM_(2.5)、PM_(10)浓度呈降低趋势。随着大气气压上升,PM_(2.5)与PM_(10)浓度随之增加。(3)不同季节的气象因子对PM_(2.5)、PM_(10)影响存在差异。  相似文献   

2.
利用2015年1月1日至12月31日南水北调中线源头南阳市主城区5个国控空气质量监测站24 h自动连续采样的PM_(10)、PM_(2.5)质量浓度数据和同期气象要素观测数据,分析了南阳市大气颗粒物浓度的污染特征及其与气象因子的关系。结果表明:2015年南阳市PM_(10)、PM_(2.5)年均质量浓度分别为0.136、0.074 mg/m~3,超标率分别为31.8%、39.2%;PM_(10)、PM_(2.5)峰值均出现在1月,PM_(10)谷值出现在11月,PM_(2.5)谷值出现在9月;PM_(10)四季日变化均呈双峰型,而PM_(2.5)冬季日变化呈双峰型,其他季节无明显峰值;PM_(2.5)/PM_(10)值在43%~65%,均值54%;PM_(10)、PM_(2.5)与大气压呈显著正相关,与温度、相对湿度呈显著负相关,与风速、降水相关性不明显。  相似文献   

3.
针对宁波市大气能见度的观测研究表明,宁波市秋冬季大气能见度均值为11.6 km,霾日发生率为31.6%,霾日的能见度均值为6.6 km,且PM_(2.5)质量浓度在100~120μg/m3范围内的频率最高。能见度随着PM_(2.5)浓度增大呈指数下降,且相同的PM_(2.5)浓度情况下,相对湿度越大,能见度越低。能见度为10 km的临界点上,PM_(2.5)质量浓度值对应为67.5μg/m3。不同相对湿度时,能见度为10 km对应的PM_(2.5)质量浓度临界值不同。通过建立能见度回归方程发现,低相对湿度(RH≤30%)时,PM_(2.5)对能见度的影响权重最大;高相对湿度(RH60%)时,相对湿度的权重最大;RH低于60%时,RH的权重随着PM_(2.5)浓度的增加而增大;而RH高于60%时,RH的权重随着PM_(2.5)浓度的增加而减小。分析结果可为宁波市灰霾防治和采取合适的管控措施提高能见度提供一定参考。  相似文献   

4.
新疆大气颗粒物的时空分布特征   总被引:1,自引:0,他引:1  
基于2015年新疆12个城市的PM_(10)和PM_(2.5)地面监测数据,并结合同期气象观测数据,分析了新疆PM_(10)和PM_(2.5)质量浓度的时空分布特征及其与气象要素的关联性。结果表明:新疆大气颗粒物年均质量浓度呈现南高北低特征,南疆各城市的年均PM_(10)质量浓度为150~262μg/m~3,年均PM_(2.5)质量浓度为50~118μg/m~3。北疆各城市的质量浓度相对较低,年均PM_(10)质量浓度为28~139μg/m~3,年均PM_(2.5)质量浓度为13~74μg/m~3。从时间变化来看,在春季和夏季,新疆以粗颗粒物污染为主,冬季以细颗粒物污染为主。此外,在南疆各城市3月PM_(10)质量浓度突然大幅升高与相对湿度明显下降、风速增大直接相关,沙尘天气是导致该区域春季高PM_(10)质量浓度的重要原因。  相似文献   

5.
使用2012—2015年无锡市区的6种大气污染物监测数据,对无锡市区各污染物的年度变化、空间分布、影响因素进行了分析。结果表明:(1)2012—2015年无锡市区SO_2、O_3质量浓度呈下降趋势,且趋势显著;NO_2质量浓度呈下降趋势,但不明显;CO、PM_(10)、PM_(2.5)的质量浓度年际变化比较平稳。(2)无锡市区SO_2、NO_2、PM_(10)、PM_(2.5)、CO的空气质量分指数(IAQI)均为冬季最高、夏季最低;O_3的IAQI则为夏季最高、冬季最低。(3)SO_2、NO_2、PM_(10)、PM_(2.5)、CO浓度间呈两两正相关,且相关性极显著;O_3浓度与NO_2、CO呈显著负相关,与SO_2、PM_(10)、PM_(2.5)浓度之间没有明显的关联。(4)分析了无锡市区各项大气污染物浓度的空间分布特征。(5)SO_2、NO_2、PM_(10)浓度周内变化具有"周末效应"的特征,而O_3、CO和PM_(2.5)浓度周内变化出现"反周末效应"。  相似文献   

6.
杭州城区PM2.5和PM10污染特征及其影响因子分析   总被引:1,自引:0,他引:1  
利用2013年12月—2014年11月杭州城区空气质量监测站PM_(2.5)、PM_(10)浓度值结合气象、道路、人口数据以及站点周边绿地信息分析PM_(2.5)、PM_(10)浓度时空特征及其影响因子。结果表明,杭州城区各监测站PM_(2.5)和PM_(10)晴天日浓度变化趋势基本一致,PM_(2.5)比PM_(10)污染严重;晴天日PM_(2.5)、PM_(10)浓度值与对应的温度(-0.463,-0.281)、风速(-0.305,-0.332)呈负相关,与湿度(0.257,0.239)呈正相关;晴天有风时,杭州市区PM_(2.5)、PM_(10)污染北部重于南部,东部重于西部,浓度极高值集中在风速小于5 m/s时段,且风速越小浓度值越高;温度为12℃左右,湿度在60%~80%时,颗粒物污染最严重;交通高峰时各监测站PM_(2.5)、PM_(10)污染程度存在明显差异。相关性分析表明,PM_(2.5)、PM_(10)污染程度与道路密度成正比,与缓冲区内绿地覆盖面积成反比。PM_(2.5)污染程度与人口密度成正比,PM_(10)污染与人口密度成反比。  相似文献   

7.
利用2014年苏州地区观测资料对城市气溶胶与O_3之间的相互作用进行研究,结果表明:苏州市晴空指数(CI)与PM_(10)、PM_(2.5)呈显著负相关; PM_(10)、PM_(2.5)质量浓度每增加1μg/m3,晴天条件下白天向下短波辐射(DSR)分别下降1. 48 W/m2和1. 52 W/m2; DSR与O_3呈显著正相关; O_3与PM_(10)、PM_(2.5)呈负相关,表明气溶胶对O_3浓度存在衰减作用。2014年11月10日—12日个例研究表明,在到达地面的DSR几乎不变的情况下,气溶胶与O_3之间发生非均相化学反应,造成O_3浓度降低。2014年12月13日—14日个例研究表明,气溶胶通过对太阳辐射的消光作用,造成到达地面的DSR减弱,O_3浓度降低。  相似文献   

8.
对2014—2016年齐齐哈尔市PM_(2.5)与PM_(10)质量浓度的时间变化特征进行简要分析,并探究PM_(2.5)/PM_(10)以及PM_(2.5)与PM_(10)的相关性。结果表明:2014—2016年齐齐哈尔的PM_(2.5)与PM_(10)的年均质量浓度分别为36.7、62.9μg/m~3,且呈逐渐下降趋势;冬季的PM_(2.5)与PM_(10)浓度最高,秋季次之,春季与夏季相对较低;2014—2016年PM_(2.5)与PM_(10)质量浓度月变化趋势基本相同,整体呈现2—6月逐渐下降,9—11月逐渐上升的规律;PM_(2.5)与PM_(10)质量浓度的日变化均呈双峰现象;对PM_(2.5)与PM_(10)进行线性拟合,相关系数为0.896 3。同时,残差分析也说明两者拟合情况良好,四季相关系数为r_(秋季)(0.982 2)r_(冬季)(0.964 4)r_(夏季)(0.943 9)r_(春季)(0.829 6);2014—2016年PM_(2.5)/PM_(10)平均值为55.27%,大气颗粒物PM_(2.5)的贡献率高达一半以上。  相似文献   

9.
于2017年3月1日—5月31日监测分析了连云港市大气PM_(2.5)中主要水溶性无机离子质量浓度的日变化规律,以及与气象因子、PM10、PM_(2.5)相关性。结果表明,水溶性无机离子质量浓度与环境空气中NO_2、CO、PM_(10)、PM_(2. 5)显著相关,与气温、风速、能见度等呈负相关;日变化呈明显单峰型,峰值出现在08:00左右;水溶性无机离子季度均值为27. 2μg/m~3,占ρ(PM_(2.5))平均50%左右,ρ(NO_3~-)、ρ(SO_4~(2-))和ρ(NH_4~+)占ρ(水溶性无机离子)总85%以上;指出,SO_4~(2-)主要受远距离传输的影响,NO_3~-和NH_4~+主要受局地源的影响。  相似文献   

10.
为深入了解邢台市PM_(10)、PM_(2.5)浓度变化情况和气流后向轨迹,对邢台市2013—2016年环境大气颗粒污染物监测数据进行了分析,同时利用HYSPLIT模型计算出逐日72 h后向气流轨迹。结果表明:邢台市的PM_(10)和PM_(2.5)质量浓度在2013—2016年间呈逐年下降趋势,PM_(10)和PM_(2.5)质量浓度高值出现在冬季(296μg/m~3和192μg/m~3),最低值出现在夏季(140μg/m~3和80μg/m~3),PM_(10)和PM_(2.5)质量浓度在日变化上均呈"双峰双谷"型分布;后向轨迹的季节聚类分析表明,春季大气颗粒物污染以粒径2.5~10μm的颗粒污染物为主,夏季、秋季和冬季的大气颗粒物污染以PM_(2.5)为主;逐日聚类分析表明,在路径为西北偏西向的、途经多个沙源地的气流影响下,邢台市的PM_(10)和PM_(2.5)质量浓度处于一个相对高值;来源于偏南向的气流由于化合反应,污染物积聚导致PM_(10)、PM_(2.5)质量浓度也处于相对高值;在来源于西北向和偏北向的、水汽含量相对较低的气流影响下,邢台市的PM_(10)、PM_(2.5)质量浓度出现一个明显的下降。  相似文献   

11.
2020年2—3月,位于福建沿海地区中部的莆田市在环境空气质量自动监测过程中出现了严重的PM_(10)和PM_(2.5)质量浓度"倒挂"现象,小时值"倒挂"率为19.86%,日均值"倒挂"率为16.67%。在高相对湿度和低风速气象条件下,颗粒物会出现严重的"倒挂"现象,"倒挂"过程中常伴随着颗粒物和气态污染物(SO_2、NO_2和CO)质量浓度的增加。因此,于2020年2月16日—3月26日开展了颗粒物自动监测和手工监测比对,并结合气象参数、气态污染物质量浓度,以及PM_(10)和PM_(2.5)中水溶性离子和液态水的含量特征,进一步探讨了莆田市颗粒物质量浓度"倒挂"的主要成因。研究表明,PM_(10)和PM_(2.5)自动监测仪器检测原理的差异是导致颗粒物质量浓度"倒挂"的重要原因之一,而气象条件(相对湿度、气温和风速等)、颗粒物质量浓度、颗粒物中主要吸湿组分(NO_3~-、SO_4~(2-)和NH_4~+)和液态水的含量也是颗粒物质量浓度"倒挂"的主要影响因素。莆田市2020年2—3月出现高频率"倒挂"现象是多重因素共同作用的结果,解决该问题需要同时考虑监测仪器检测原理、气象参数、颗粒物质量浓度和吸湿组分等的影响。  相似文献   

12.
Atmospheric aerosol particles and metallic concentrations, ionic species were monitored at the Experimental harbor of Taichung sampling site in this study. This work attempted to characterize metallic elements and ionic species associated with meteorological conditions variation on atmospheric particulate matter in TSP, PM2.5, PM2.5–10. The concentration distribution trend between TSP, PM2.5, PM2.5–10 particle concentration at the TH (Taichung harbor) sampling site were also displayed in this study. Besides, the meteorological conditions variation of metallic elements (Fe, Mg, Cr, Cu, Zn, Mn and Pb) and ions species (Cl, NO3 , SO4 2−, NH4 +, Mg2+, Ca2+ and Na+) concentrations attached with those particulate were also analyzed in this study. On non-parametric (Spearman) correlation analysis, the results indicated that the meteorological conditions have high correlation at largest particulate concentrations for TSP at TH sampling site in this study. In addition, the temperature and relative humidity of meteorological conditions that played a key role to affect particulate matter (PM) and have higher correlations then other meteorological conditions such as wind speed and atmospheric pressure. The parameter temperature and relative humidity also have high correlations with atmospheric pollutants compared with those of the other meteorological variables (wind speed, atmospheric pressure and prevalent wind direction). In addition, relative statistical equations between pollutants and meteorological variables were also characterized in this study.  相似文献   

13.
The atmospheric haze over the Pearl River Delta (PRD) was investigated by using the Models-3 Community Multi-scale Air Quality modeling system with meteorological fields simulated by the Fifth-generation National Center for Atmospheric Research/Penn State University Mesoscale Model (MM5) from September 26th to September 30th, 2004. The model-simulated meteorological elements and particulate matter with aerodynamic diameter less than 10 μm (PM10) were compared with observations at four air quality-monitoring stations. The results showed that MM5 successfully reproduced the diurnal variations of temperature, wind speed, and wind directions at these stations. The temporal variations of the simulated values were consistent with those of the observed (such as temperature, wind speed, and wind direction). The correlation coefficient was 0.91 for temperature and 0.56 for wind speed. The modeling results show that the spatial distributions of simulated PM10 were closely related to the source emissions indicating three maxima of PM10 over the PRD. The sea–land breezes diurnal cycle played a significant role in the redistribution and transport of PM10. Nighttime land breeze could transport PM10 to the coast and the sea, while daytime sea breeze (SB) could carry the accumulated PM10 offshore back to the inland cities. PM10 could also be transported vertically to a height of up to about 1000 m because of strong turbulence in the SB front. Process analyses indicated that the emission sources and the vertical diffusion were the major processes to influence the concentrations of particulate matter with aerodynamic diameter less than 2.5 μm (PM2.5).  相似文献   

14.
利用2015—2017年春节期间东北地区主要大气污染物(PM_(10)、PM_(2.5)、SO_2、NO_2、CO和O3)质量浓度监测资料及相应气象因子(温度、湿度、风速和气压)观测资料,分析了春节期间烟花爆竹禁燃对东北地区空气质量的影响。结果表明:随着东北地区主要城市禁燃力度的增强,空气质量逐年提升,PM_(2.5)和SO_2浓度逐年大幅度下降。禁燃可明显降低城区PM_(2.5)浓度,而由于春节期间污染源整体减少,城区和城郊监测点PM_(2.5)浓度值差异减小。烟花爆竹对PM_(10)和PM_(2.5)浓度影响高于对气体污染物SO_2、NO_2和CO的影响。此外,气象条件对东北地区春节期间禁燃改善空气质量的效果也有明显影响。因此,结合春节期间的气象条件,在东北地区实施禁燃政策动态调整非常必要。  相似文献   

15.
通过对黑龙江省4个自然年(2016年1月1日—2019年12月31日)环境空气污染物和气象要素的分析,揭示了黑龙江省气象条件对空气污染物浓度的影响规律与特征。对PM_(2.5)、PM_(10)、SO_2、NO_2、CO和O_3等6项污染物的描述性统计和简单的相关分析显示:黑龙江省环境空气质量呈现逐年变好的趋势,非采暖期环境空气质量好于采暖期,6项污染物中除O_3呈现夏季偏高以外,其余污染物采暖期浓度均高于非采暖期。运用典型相关分析法探究环境空气污染物与温度、降水量、相对湿度、风速和气压5项气象要素之间的关系,并进行统计学检验,结果表明:环境空气污染物与气象要素之间存在显著相关,温度、风速和相对湿度对污染物具有显著影响。非采暖期大气相对湿度对PM_(10)和O_3-8h的影响显著;而在采暖期,风速对PM_(10)和PM_(2.5)的影响显著。  相似文献   

16.
北京地区不同季节PM2.5和PM10浓度对地面气象因素的响应   总被引:1,自引:0,他引:1  
利用2013年1月—2014年12月北京地区PM_(2.5)和PM_(10)监测数据和同期近地面气象观测数据,采用非参数分析法(Spearman秩相关系数)研究了北京地区PM_(2.5)和PM_(10)的浓度对不同季节地面气象因素的响应。结果表明:北京地区大气颗粒物浓度水平具有明显的季节特征,冬季大气颗粒物污染最严重,夏季最轻。不同季节影响颗粒物浓度水平的气象因素各不相同,其中风速和日照时数为主要影响因素。PM_(2.5)和PM_(10)质量浓度对气象因素变化的响应程度也有较大区别,PM_(2.5)/PM_(10)比值冬季最高,PM_(2.5)影响最大,春季最低,PM_(10)影响最大。这些结论可对制订科学有效的大气污染控制策略提供参考。  相似文献   

17.
In this study, the relationship between inhalable particulate (PM10), fine particulate (PM2.5), coarse particles (PM2.5 – 10) and meteorological parameters such as temperature, relative humidity, solar radiation, wind speed were statistically analyzed and modelled for urban area of Kolkata during winter months of 2003–2004. Ambient air quality was monitored with a sampling frequency of twenty-four hours at three monitoring sites located near traffic intersections and in an industrial area. The monitoring sites were located 3–5 m above ground near highly trafficked and congested areas. The 24 h average PM10 and PM2.5 samples were collected using Thermo-Andersen high volume samplers and exposed filter papers were extracted and analysed for benzene soluble organic fraction. The ratios between PM2.5 and PM10 were found to be in the range of 0.6 to 0.92 and the highest ratio was found in the most polluted urban site. Statistical analysis has shown a strong positive correlation between PM10 and PM2.5 and inverse correlation was observed between particulate matter (PM10 and PM2.5) and wind speed. Statistical analysis of air quality data shows that PM10 and PM2.5 are showing poor correlation with temperature, relative humidity and solar radiation. Regression equations for PM10 and PM2.5 and meteorological parameters were developed. The organic fraction of particulate matter soluble in benzene is an indication of poly aromatic hydrocarbon (PAH) concentration present in particulate matter. The relationship between the benzene soluble organic fraction (BSOF) of inhalable particulate (PM10) and fine particulate (PM2.5) were analysed for urban area of Kolkata. Significant positive correlation was observed between benzene soluble organic fraction of PM10 (BSM10) and benzene soluble organic fraction of PM2.5 (BSM2.5). Regression equations for BSM10 and BSM2.5 were developed.  相似文献   

18.
One-minute PM2.5 concentration was obtained with LD-5C pocket microcomputer laser dust instrument from Dec. 15th, 2005 to Jan. 16th, 2006 and Mar. 17th to Apr. 28th, 2006 in Beijing. The concentration of SO2, NO2, O3, CO, and PM10 from Jan. 1st, 2001 to Dec. 31st, 2004 were obtained from the conversion of air pollution index. Results showed that all the pollutants showed cyclic characteristics. The longer yearly cycles was shown from SO2, NO2, O3, CO, and PM10, as the sampling time was 4-year long and daily collected. The shorter hourly and daily cycle was shown from 1-min PM2.5, as the sampling time was about 1-month long and one collected at 1 min. The spectral density analysis confirmed this from the periodogram graphs. The longer yearly cycle (365, 180 days), the seasonal cycle (120, 60–90 days), and monthly cycle (21, 23, 27 days) of SO2, NO2, CO, O3, and PM10 were obviously shown. In addition, the shorter weekly cycle of 5–7 days is obviously shown, too. The shorter hourly cycle (8–12, 4–6, 3, 1–2 h, 20 min) of 1-min PM2.5 was also indicated from spectral density analysis. Two major factors contribute the 1-min PM2.5 cycles, i.e., the meteorological factors and source effects. Both the relative humidity and dew point showed consistent variation with PM2.5, but the wind speed showed inverse variations with PM2.5. Furthermore, the spectral density analysis of the meteorological factors (4–5, 2–2.5, 1–1.5 days, 12, 6–8, 3 h) may partially explain the cycles of PM2.5. As for the sources effects, it can be shown from the strong dust storm of April 16–18th, 2006. PM2.5 constantly increased tens and even hundreds of times high concentration within a few minutes due to the intensity of the dust sources.  相似文献   

19.
2018年11—12月北京市发生了4次以PM2.5为首要污染物的重污染天气过程,为了分析数值模型对4次重污染过程的预报能力,将CMAQ模式提前1~7 d对北京市PM2.5的小时预报结果与观测结果对比,分别从离散统计和分类统计2个方面评估CMAQ模式对4次重污染天气过程的预报效果,并简要分析了偏差产生的气象方面原因。结果表明:CMAQ模式提前1~6 d对重污染天气过程的预报显示出良好的性能,为日常业务预报提供了可借鉴的参考信息,可较好地预报出PM2.5小时浓度变化趋势和浓度水平,离散统计结果显示提前1~4 d的预报结果好于提前5~7 d,相关系数r基本大于0.8,但有一定程度的低估趋势;分类统计结果显示不同预报时效预报准确率大于70%,探测准确率高于55%,部分时段可以达到80%~90%,对人工预报起到了良好的参考作用;输入的气象场的变化及其偏差对于重污染的起始时间、持续时间及清除时间有一定的影响,对相对湿度预报偏小和风速预报偏大是造成CMAQ模式低估的一个重要原因。  相似文献   

20.
Review on the annual PM10 concentrations over a 10-year period shows that Macau is subjected to severe fine particulate pollution. Investigations of its variation in monthly and daily time scales with the local meteorological records reveal further details. It is found that a distinct feature of the Asian monsoon climates, the changes of wind direction, mainly controls the general trend of PM10 concentration in a year. The monsoon driven winter north-easterly winds bring upon Macau dry and particle enriched air masses leading to a higher concentration in that period while the summer south-westerly winds transport humid and cleaner air to the region leading to a lower PM10 value. This distinct seasonal feature is further enhanced by the lower rainfall volume and frequency as well as mixing height in winter and their higher counterparts in summer. It is also found that the development of tropical cyclones near Macau could also impose episode like PM10 concentration spikes due to the pre-typhoon induced stagnant air motion followed by the swing of wind direction to the northerly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号