首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Impact of wastewater irrigation on some biological properties was studied in an area where treated sewage water is being supplied to the farmers since 1979 in the western part of National Capital Territory of New Delhi under Keshopur Effluent Irrigation Scheme. Three fields were selected which had been receiving irrigation through wastewater for last 20, 10 and 5 years. Two additional fields were selected in which the source of irrigation water was tubewell. The soil bacterial and fungal population density was studied in soil layers of 0?C15, 15?C30, 30?C60 and 60?C120 cm depths. Groundwater samples were collected from the piezometers installed in the field irrigated with sewage water for last 20, 10 and 5 years. Results indicate that there was significant increase in bacterial and fungal count in sewage-irrigated soils as compared to their respective control. The population density of bacteria and fungi in waste water-irrigated soils increased with the duration of sewage water application and decreased with increasing depth. The bacterial and fungal count was also directly proportional to organic carbon, sand and silt content and negatively correlated to the clay content, electrical conductivity, pH and bulk density of the soil. Groundwater under sewage-irrigated fields had higher values of most probable number (MPN) index as compared to that of tubewell water-irrigated fields. All the shallow and deep groundwaters were found to be contaminated with faecal coliforms. The vadose zone had filtered the faecal coliform to the tune of 98?C99%, as the MPN index was reduced from ??18,000 per 100 ml of applied waste water to 310 per 100 ml of groundwater under 20 years sewage-irrigated field. The corresponding values of MPN were 250 and 130 per 100 ml of shallow groundwater under 10 and 05 years sewage-irrigated fields, respectively. Rapid detection of faecal contamination suggested that the Citrobacter freundii and Salmonella were dominant in shallow groundwater, while Escherichia coli was dominant in deep groundwater collected from sewage-irrigated field.  相似文献   

2.
This study was carried out in three different cities of western Madhya Pradesh (India) to investigate the effects of long-term irrigation with industrial waste water (IWW), contaminated groundwater (CGW), and untreated municipal sewage water (USW) on soil fertility as well as on wheat crop yield. Irrigation with these three types of polluted water increased organic matter content as well as contents of available P (with IWW and USW only), available K, available S, available Zn, available Cu (IWW only), and available Mn (IWW and CGW only). The magnitude of improvement in soil fertility status was the highest in the case of USW, followed by IWW and finally, by CGW. Concentrations of Na in wheat leaf tissue increased by 198 and 58 % whereas concentrations of Ca decreased significantly by 16 and 13 % due to the use of IWW and CGW, respectively, resulting in poor Ca nutrition to the crop. Although wheat grain yield increased considerably due to USW, the same recorded significant decreases with IWW and CGW. In spite of the enhancement in the available nutrient status, decrease in wheat grain yield with the use of IWW and CGW could be due to the build-up of salts in the soil and an imbalance in the Na/Ca ratio in wheat crops irrigated with IWW and CGW. The adverse effect on wheat productivity was more pronounced with IWW as compared to CGW.  相似文献   

3.
Risk assessment of metal-contaminated soil depends on how precisely one can predict the solubility of metals in soils. Responses of plants and soil organisms to metal toxicity are explained by the variation in free metal ion activity in soil pore water. This study was undertaken to predict the free ion activity of Zn, Cu, Ni, Cd, and Pb in metal-contaminated soil as a function of pH, soil organic carbon, and extractable metal content. For this purpose, 21 surface soil samples (0–15 cm) were collected from agricultural lands of various locations receiving sewage sludge and industrial effluents for a long period. One soil sample was also collected from agricultural land which has been under intensive cropping and receiving irrigation through tube well water. Soil samples were varied widely in respect of physicochemical properties including metal content. Total Zn, Cu, Ni, Cd, and Pb in experimental soils were 2,015?±?3,373, 236?±?286, 103?±?192, 29.8?±?6.04, and 141?±?270 mg kg?1, respectively. Free metal ion activity, viz., pZn2+, pCu2+, pNi2+, pCd2+, and pPb2+, as estimated by the Baker soil test was 9.37?±?1.89, 13.1?±?1.96, 12.8?±?1.89, 11.9?±?2.00, and 11.6?±?1.52, respectively. Free metal ion activity was predicted by pH-dependent Freundlich equation (solubility model) as a function of pH, organic carbon, and extractable metal. Results indicate that solubility model as a function of pH, Walkley–Black carbon (WBC), and ethylenediaminetetraacetic acid (EDTA)-extractable metals could explain the variation in pZn2+, pCu2+, pNi2+, pCd2+, and pPb2+ to the extent of 59, 56, 46, 52, and 51 %, respectively. Predictability of the solubility model based on pH, KMnO4-oxidizable carbon, and diethylenetriaminepentaacetic acid-extractable or CaCl2-extractable metal was inferior compared to that based on EDTA-extractable metals and WBC.  相似文献   

4.
Long-term sustainability and a declining trend in productivity of rice–wheat rotation in the Indo-Gangetic plain, often direct towards the changes in soil quality parameters. Soil quality is decided through few sensitive soil physical, chemical and biological indicators as it cannot be measured directly. The present investigation was carried out to develop a valid soil quality index through some chosen indicators under long-term influences of tillage, water and nutrient-management practices in a rice–wheat cropping system. The experiment consisted of two tillage treatments, three irrigation treatments, and nine nutrient management treatments for both rice and wheat, was continued for 8 years. The index was developed using expert-opinion based conceptual framework model. After harvest of rice, the CFSQI-P (productivity) was higher under puddled situation, whereas CFSQI-EP (environmental protection) was more under non-puddled condition and 3-days of drainage was found promising for all the indices. No-tillage practice always showed higher soil quality index. The treatments either receiving full organics (100 % N) or 25 % substitution of fertilizer N with organics showed higher soil quality indices. Puddling, irrigation after 3 days of drainage and substitution of 25 % recommended fertilizer N dose with FYM in rice could be practiced for maintaining or enhancing soil quality. No-tillage, two irrigations, and domestic sewage sludge in wheat can safely be recommended for achieving higher soil quality.  相似文献   

5.
Increasing cadmium (Cd) accumulation in agricultural soils is undesirable due to its hazardous influences on human health. Thus, having more information on spatial variability of Cd and factors effective to increase its content on the cultivated soils is very important. Phosphate fertilizers are main contamination source of cadmium (Cd) in cultivated soils. Also, crop rotation is a critical management practice which can alter soil Cd content. This study was conducted to evaluate the effects of long-term consumption of the phosphate fertilizers, crop rotations, and soil characteristics on spatial variability of two soil Cd species (i.e., total and diethylene triamine pentaacetic acid (DTPA) extractable) in agricultural soils. The study was conducted in wheat farms of Khuzestan Province, Iran. Long-term (27-year period (1980 to 2006)) data including the rate and the type of phosphate fertilizers application, the respective area, and the rotation type of different regions were used. Afterwards, soil Cd content (total or DTPA extractable) and its spatial variability in study area (400,000 ha) were determined by sampling from soils of 255 fields. The results showed that the consumption rate of di-ammonium phosphate fertilizer have been varied enormously in the period study. The application rate of phosphorus fertilizers was very high in some subregions with have extensive agricultural activities (more than 95 kg/ha). The average and maximum contents of total Cd in the study region were obtained as 1.47 and 2.19 mg/kg and DTPA-extractable Cd as 0.084 and 0.35 mg/kg, respectively. The spatial variability of Cd indicated that total and DTPA-extractable Cd contents were over 0.8 and 0.1 mg/kg in 95 and 25 % of samples, respectively. The spherical model enjoys the best fitting and lowest error rate to appraise the Cd content. Comparing the phosphate fertilizer consumption rate with spatial variability of the soil cadmium (both total and DTPA extractable) revealed the high correlation between the consumption rate of P fertilizers and soil Cd content. Rotation type was likely the main effective factor on variations of the soil DTPA-extractable Cd contents in some parts (eastern part of study region) and could explain some Cd variation. Total Cd concentrations had significant correlation with the total neutralizing value (p?<?0.01), available P (p?<?0.01), cation exchange capacity (p?<?0.05), and organic carbon (p?<?0.05) variables. The DTPA-extractable Cd had significant correlation with OC (p?<?0.01), pH, and clay content (p?<?0.05). Therefore, consumption rate of the phosphate fertilizers and crop rotation are important factors on solubility and hence spatial variability of Cd content in agricultural soils.  相似文献   

6.
Laboratory experiment was conducted to understand the persistence behavior of tetraconazole in three soils of West Bengal (alluvial, red lateritic, and coastal saline) and also in water maintained at three different pH (4.0, 7.0, and 9.2) conditions. Processed soil samples (100 g) were spiked at two treatment doses: 2.5 μg/g (T1) and 5.0 μg/g (T2). Double distilled buffered water (200 ml) was spiked at two treatment doses: 1.0 μg/ml (T1) and 2.00 μg/ml (T2). The tetraconazole dissipation followed first-order reaction kinetics and the residual half-life (T 1/2) values in soil were found to be in the range of 66.9–77.2 days for T1 and 73.4–86.0 days for T2. The persistence increased in the order red lateritic > new alluvial > coastal saline. Interestingly, the red lateritic soil exhibited the lowest pH (5.56) and organic carbon (0.52 %) content as compared to other two soils. However, the dissipation of tetraconazole in case of water was not pH dependant. The T 1/2 values in water were in the range of 94 to 125 days. The study indicated the persistent nature of tetraconazole in soil and water.  相似文献   

7.
Increasing nitrogen (N) immobilization and weed interference in the early phase of implementation of conservation agriculture (CA) affects crop yields. Yet, higher fertilizer and herbicide use to improve productivity influences greenhouse gase emissions and herbicide residues. These tradeoffs precipitated a need for adaptive N and integrated weed management in CA-based maize (Zea mays L.)—wheat [Triticum aestivum (L.) emend Fiori & Paol] cropping system in the Indo-Gangetic Plains (IGP) to optimize N availability and reduce weed proliferation. Adaptive N fertilization was based on soil test value and normalized difference vegetation index measurement (NDVM) by GreenSeeker? technology, while integrated weed management included brown manuring (Sesbania aculeata L. co-culture, killed at 25 days after sowing), herbicide mixture, and weedy check (control, i.e., without weed management). Results indicated that the ‘best-adaptive N rate’ (i.e., 50% basal + 25% broadcast at 25 days after sowing + supplementary N guided by NDVM) increased maize and wheat grain yields by 20 and 14% (averaged for 2 years), respectively, compared with whole recommended N applied at sowing. Weed management by brown manuring (during maize) and herbicide mixture (during wheat) resulted in 10 and 21% higher grain yields (averaged for 2 years), respectively, over the weedy check. The NDVM in-season N fertilization and brown manuring affected N2O and CO2 emissions, but resulted in improved carbon storage efficiency, while herbicide residuals in soil were significantly lower in the maize season than in wheat cropping. This study concludes that adaptive N and integrated weed management enhance synergy between agronomic productivity, fertilizer and herbicide efficiency, and greenhouse gas mitigation.  相似文献   

8.
This work investigated the effect of soil aquifer treatment (SAT) operation on the fluorescence characteristics of dissolved organic matter (DOM) fractions in soils through laboratory-scale soil columns with a 2-year operation. The resin adsorption technique (with XAD-8 and XAD-4 resins) was employed to characterize the dissolved organic matter in soils into five fractions, i.e., hydrophobic acid (HPO-A), hydrophobic neutral (HPO-N), transphilic acid (TPI-A), transphilic neutral (TPI-N), and hydrophilic fraction (HPI). The synchronous fluorescence spectra revealed the presence of soluble microbial byproduct- and humic acid-like components and polycyclic aromatic compounds in DOM in soils, and SAT operation resulted in the enrichment of these fluorescent materials in all DOM fractions in the surface soil (0–12.5 cm). More importantly, the quantitative method of fluorescence regional integration was used in the analysis of excitation–emission matrix (EEM) spectra of DOM fractions in soils. The cumulative EEM volume (Φ T, n ) results showed that SAT operation led to the enrichment of more fluorescent components in HPO-A and TPI-A, as well as the dominance of less fluorescent components in HPO-N, TPI-N, and HPI in the bottom soil (75–150 cm). Total Φ T, n values, which were calculated as $ {\Phi_{{T,n}}} \times {\mathrm{DOC}} $ , suggested an accumulation of fluorescent organic matter in the upper 75 cm of soil as a consequence of SAT operation. The distribution of volumetric fluorescence among five regions (i.e., P i, n ) results revealed that SAT caused the increased content of humic-like fluorophores as well as the decreased content of protein-like fluorophores in both HPO-A and TPI-A in soils.  相似文献   

9.
The present study aimed to assess the potential ecological risk of heavy metals and nutrient accumulation in polytunnel greenhouse soils in the Yellow River irrigation region (YRIR), Northwest China, and to identify the potential sources of these heavy metals using principal component analysis. Contents of available nitrogen (AN), phosphorus (AP), and potassium (AK) in the surface polytunnel greenhouse soils (0–20 cm) varied from 13.42 to 486.78, from 39.10 to 566.97, and from 21.64 to 1,156.40 mg kg?1, respectively, as well as AP, soil organic matter (SOM) and AK contents tended to increase significantly at the 0–20- and 20–40-cm soil layers. Heavy metal accumulations occurred in the polytunnel greenhouse soils as compared to arable soils, especially at a depth of 20 cm where Cd, Zn and Cu contents were significantly higher than arable soil. Cd and As were found to be the two main polluting elements in the greenhouse soils because their contents exceeded the thresholds established for greenhouse vegetable production HJ333-2006 in China and the background of Gansu province. It has been shown that Cd, Cu, Pb and Zn at the 0–20-cm soil layer were derived mainly from agricultural production activities, whereas contents of Cr and Ni at the same soil layer were determined by ‘natural’ factors and As originated from natural sources, deposition and irrigation water.  相似文献   

10.
The tannery effluents contain a high concentration of chromium (Cr). It drastically reduces the crop yield when used for irrigation purpose. A huge volume of tannery effluents is available as irrigation for crop production. It is negatively affecting germination as well as yield of the crop. The wheat seeds were exposed to five different concentrations of Cr (0, 20, 40, 80, and 100 ppm). In Petri plates, 100 seeds were placed and the germination percent was recorded after 72 hour (h). Root elongation and coleoptile growth were measured at 72, 120, 168, and 240 h. Results showed that the germination percent of the test crop decreased with increasing Cr levels. It decreased by 6, 14, 30, and 37 % under the Cr concentration of 20, 40, 80, and 100 ppm, respectively. The root elongation was more sensitive than the coleoptile growth. The negative correlation was found between Cr levels and root elongation as well as coleoptile growth. These growth parameters were significantly affected up to 80 ppm of Cr level. The wheat growers using tannery effluent as irrigation should be well treated prior to application.  相似文献   

11.
Concentrations of selected heavy metals (Cd, Cr, Cu, Pb, Ni, Fe, and Zn), nutrients (NO 3 ? and NH3), fecal coliform colonies, and other multiple physical–chemical parameters were measured seasonally from 12 locations in an urban New Jersey estuary between 1994 and 2008. Stepwise regression, principal component analysis, and cluster analysis were used to group water quality results and sampling locations, as well as to assess these data’s relationship to sewage treatment effluents and the distance to the mouth of the river. The BOD5, NH3, NO 3 ? and fecal coliform counts clustered as one group and positively correlated to the distances from treated effluent and the measures of magnitude at the discharge points. Dissolved solids and most metal species scored high along a single principal component axes and were significantly correlated with the proximity to the industrialized area. From these data, one can conclude that the effluent discharge has been a main source of anthropogenic input to the Hackensack River over the past 15 years. Therefore, the greatest improvement to water quality would come from eliminating the few remaining combined sewer overflows and improving the removal of nutrients from treated effluents before they are discharged into the creeks and river.  相似文献   

12.
Toxicity of lead in soil is well documented and established. Phytoremediation has gained attention as a cheap, easily applicable, and eco-friendly clean-up technology. Chemical methods are used to assess exact levels and type of pollutants but heavy metal content in soil can also be evaluated indirectly by estimation of phytotoxicity levels using bioassays. Plant bioassays through fast germinating cereals can indicate not only the level of pollution and its effects on growth and survival but also the progress of phytoremediation process. The performance of barley Hordeum vulgare L. seedlings as bioassay for assessment of changes in the levels of lead (Pb) at three concentrations, i.e., 300 (T1), 600 (T2), and 1,200 ppm (T3) in the soil was evaluated while testing the efficiency of Crinum asiaticum L. as a phytoremedial tool. At the first assessment, i.e., 30 DAT (days after treatment) shoot and root lengths of seedlings decreased with increasing concentrations of Pb. As the study progressed, a decrease in levels of Pb was accompanied by better germinability and growth of barley. At 120 DAT seedling growth in all the treatments were comparable to control. In T1, T2, and T3 soils, 74.5%, 83.7%, and 91.2% reduction in lead content was observed at 120 DAT. Highly significant correlations between decreasing pollutant (Pb) content in the soil, seed germination, and seedling growth of barley H. vulgare were found. The differences in root and shoot length as well as overall growth pattern are indicative of the suitability of barley as a bio-monitoring tool.  相似文献   

13.
The emissions of greenhouse gas (GHG) from soils are of significant importance for global warming. The biological and physico-chemical characteristics of soil affect the GHG emissions from soils of different land use types. Methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2) production rates from six forest and agricultural soil types in the Koteshwar hydropower reservoir catchments located in the Uttarakhand, India, were estimated and their relations with physico-chemical characteristics of soils were examined. The samples of different land use types were flooded and incubated under anaerobic condition at 30 °C for 60 days. The cumulative GHG production rates in reservoir catchment are found as 1.52 ± 0.26, 0.13 ± 0.02, and 0.0004 ± 0.0001 μg g soil?1 day?1 for CO2, CH4, and N2O, respectively, which is lower than global reservoirs located in the same eco-region. The significant positive correlation between CO2 productions and labile organic carbon (LOC), CH4 and C/N ratio, while N2O and N/P ratio, while pH of soils is negatively correlated, conforms their key role in GHG emissions. Carbon available as LOC in the reservoir catchment is found as 3–14% of the total ?C” available in soils and 0–23% is retained in the soil after the completion of incubation. The key objective of this study to signify the C, N, and P ratios, LOC, and pH with GHG production rate by creating an incubation experiment (as in the case of benthic soil/sediment) in the lab for 60 days. In summary, the results suggest that carbon, as LOC were more sensitive indicators for CO2 emissions and significant C, N, and P ratios, affects the GHG emissions. This study is useful for the hydropower industry to know the GHG production rates after the construction of reservoir so that its effect could be minimized by taking care of catchment area treatment plan.  相似文献   

14.
The present study on heavy metal contamination in soil and their accumulation in edible part (leaves) and roots of Spinacia oleracea (Spinach) on irrigation with paper mill effluent (PME)/sewage revealed that there was significant increase in the nickel (Ni, +227.17 %) content of the soil irrigated with PME, whereas in the soil irrigated with sewage chromium (Cr, +274.84 %), iron (Fe, +149.56 %), and cadmium (Cd, +133.39 %), contents were increased appreciably. The value of enrichment factor (EF) for Ni (3.27) indicated moderate enrichment in PME-irrigated soil. The EF of Fe, zinc (Zn), Cd, and Cr were <2 in PME effluent-irrigated soil which showed deficiency of minimal enrichment. In sewage irrigated soil, EF value for Cr, Fe, and Cd indicated moderate enrichment, while the values for Zn and Ni indicated deficiency of minimal enrichment. Among various metallic concentrations, the maximum concentration of Fe was observed in leaves (400.12?±?11.47 mg/kg) and root (301.41?±?13.14 mg/kg) of S. oleracea after irrigation with PME, whereas the maximum concentrations of Fe was found in leaves (400.49?±?5.97 mg/kg) and root (363.94?±?11.37 mg/kg) of S. oleracea after irrigation with sewage for 60 days. The bioaccumulation factor value was found maximum for Cd (2.23) in the plants irrigated with PME while that of Fe (0.90) in the plants irrigated with sewage. The undiluted use of PME/sewage for irrigation increased the concentration of Cr, Cd, Zn, Ni, and Fe metals which were accumulated in S. oleracea, posing a potential threat to human health from this practice of irrigation.  相似文献   

15.
Boron toxicity is an important disorder that can be limit plant growth on soils of arid and semi arid environments through the world. High concentrations of Boron may occur naturally in the soil or in groundwater, or be added to the soil from mining, fertilizers, or irrigation water. Off all the potential resources, irrigation water is the most important contributor to high levels of soil boron, boron is often found in high concentrations in association with saline soil and saline well water. Although of considerable agronomic importance, our understanding of Boron toxicity is rather fragment and limited. In this study, Boron content of Great Menderes River and Basin was researched. Great Menderes Basin is one of the consequence basins having agricultural potential, aspect of water and soil resources in Turkey. Great Menderes River, water resource of the basin was to be polluted by geothermal wastewater and thermal springs including Boron element. Great Menderes Basin has abundant geothermal water resources which contain high amounts of Boron and these ground water are brought to surface and used for various purposes such as power generation, heating or thermal spring and than discharged to Great Menderes River. In order to prevent Boron pollution and hence unproductively in soils, it is necessary not to discharged water with Boron to irrigation water. According to results, it was obtained that Boron content of River was as high in particular Upper Basin where there was a ground thermal water reservoir. Boron has been accumulated more than plant requirement in this area irrigated by this water. Boron content of River was relatively low in rainy months and irrigation season while it was high in dry season. Boron concentration in the River was to decrease from upstream to downstream. If it is no taken measure presently, about 130,000 ha irrigation areas which was constructed irrigation scheme in the Great Menderes basin will expose the Boron pollution and salinity. Even though Boron concentration of river water is under 0.5 ppm limit value, Boron element will store in basin soils, decrease in crop yields, and occur problematic soils in basin.  相似文献   

16.
High selenium (Se) concentrations have been found in surface waters in the Kendrick Reclamation Project, Wyoming. Precipitation and irrigation water moving over seleniferous soils are contributing causes, and drought may exacerbate this. This study surveyed Se concentrations and discharges in local surface streams, irrigation drains, and the delivery canal. Sites were sampled monthly and analyzed for Se and total suspended solids (TSS). A completely randomized design with two factors (soil parent material and location, inside or outside irrigation district) was used. Mean Se concentrations were 64 μg L???1 inside the irrigation district on shale soils, 17 μg L???1 inside the district off shale soils, 5 μg L???1 outside the district on shale soils, and 3 μg L???1 outside the district off shale soils. Correlations between discharge and Se concentrations were generally negative, while correlations between discharge and Se load were generally positive. There was little correlation between load and concentration, and little correlation between TSS and Se. A comparison of Se concentrations in streams and drains showed Se concentrations were significantly higher (p?<?0.001) in streams during the irrigation season, but not in the off-season (p?=?0.515). We conclude that higher discharges decrease Se concentration, but increase load. Conversion from flood to sprinkle irrigation may increase Se concentrations by reducing discharge, but decrease Se loads going into the N. Platte River, and will likely alter the timing and magnitude of flows. Both load and concentration should be considered when implementing Se regulations and standards.  相似文献   

17.
A modified LC-MS method for the analysis of mepiquat residue in wheat, potato, and soil was developed and validated. A hydrophilic interaction liquid chromatographic column has been successfully used to retain and separate the mepiquat. Mepiquat residue dynamics and final residues in supervised field trials at Good Agricultural Practice (GAP) conditions in wheat, potato, and soil were studied. The limits of quantification for mepiquat in all samples were all 0.007 mg kg?1, which were lower than their maximum residue limits. At fortification levels of 0.04, 0.2, and 2 mg kg?1 in all samples, recoveries ranged from 77.5 to 116.4 % with relative standard deviations of 0.4–7.9 % (n?=?5). The dissipation half-lives (T 1/2) of mepiquat in soil (wheat), wheat plants, soil (potato), and potato plants were 4.5–6.3, 3.0–5.6, 2.2–4.6, and 2.4–3.2 days, respectively. The final residues of mepiquat were below 0.153 mg kg?1 in soil (wheat), 0.052–1.900 mg kg?1 in wheat, below 0.072 mg kg?1 in soil (potato), and below 1.173 mg kg?1 in potato at harvest time. Moreover, pesticide risk assessment for all the detected residues was conducted. A maximum 0.0012 % of acceptable daily intake (150 mg kg?1) for national estimated daily intake indicated low dietary risk of these products.  相似文献   

18.
Pig manure (PM) is widely used as an organic fertilizer to increase yields of crops. Excessive application of compost containing relatively great concentrations of copper (Cu) and zinc (Zn) can change soil quality. To clarify the effects of different rates of application and to determine the optimal rate of fertilization, PM containing 1,115 mg Cu kg?1, dry mass (dm) and 1,497 mg Zn kg?1, dm was applied to alkaline soil at rates of 0, 11, 22, 44, 88, and 222 g PM kg?1, dm. Phospholipid fatty acids (PLFAs) were used to assess soil microbial community composition. Application of PM resulted in greater concentrations of total nitrogen (TN), NH4 +-N, NO3 ?-N, total carbon (TC), soil organic matter (SOM) but lesser pH values. Soils with application rates of 88–222 g PM kg?1, dm had concentrations of total and EDTA-extractable Cu and Zn significantly greater than those in soil without PM, and concentrations of T-Cu and T-Zn in these amended soils exceeded maximum limits set by standards in china. Except in the soil with a rate of 11 g PM kg?1, dm, total bacterial and fungal PLFAs were directly proportional to rate of application of PM. Biomasses of bacteria and fungi were significantly greater in soils with application rates of 44–222 g PM kg?1, dm than in the soil without PM. SOM, TC and EDTA-Zn had the most direct influence on soil microbial communities. To improve fertility of soils and maintain quality of soil, rate of application should be 22–44 g PM kg?1 dm, soil containing Cu and Zn.  相似文献   

19.
Herbicide is indispensable for crop production. However, substantial usage of herbicide has led to its increasing accumulation in soils and crops. In addition, cadmium has become one of the widely occurring contaminants in soils due to its significant release into environment via anthropogenic activities. In this study, ecotoxicological investigations were made by exposing the food crop wheat to joint contaminations of Cd and metsulfuron-methyl, a sulfonylurea herbicide. We analyzed growth and physiological and molecular responses in wheat exposed to 0.5 mg kg?1 Cd and 0.02 mg kg?1 metsulfuron-methyl (MSM). Soils contaminated with Cd and MSM complex caused significantly detrimental effect on wheat growth and physiological process. Combinative treatments with Cd and MSM damage more severely the plant cells as compared with Cd or MSM treatment alone. Compared with the growth parameter, the biochemical and molecular responses of wheat appeared more pronounced to Cd and MSM complex. Furthermore, compared with control, wheat plants exposed to Cd?+?MSM generated more O2?.and H2O2, both of which were shown to be the cause of enhanced activity of several antioxidant enzymes. Native polyacrylamide gel eletrophoresis and molecular response analyses were performed to validate the results indicated above. Our results indicated that joint contamination with Cd and MSM was more toxic to wheat than a single contamination. These sensitive biological parameters can be used as biomarkers monitoring the ecotoxicological process in plants.  相似文献   

20.
The present study deals with detailed hydrochemical assessment of groundwater within the Saq aquifer. The Saq aquifer which extends through the NW part of Saudi Arabia is one of the major sources of groundwater supply. Groundwater samples were collected from about 295 groundwater wells and analyzed for various physico-chemical parameters such as electrical conductivity (EC), pH, temperature, total dissolved solids (TDS), Na+, K+, Ca2+, Mg2+, CO3 ?, HCO3 ?, Cl?, SO4 2?, and NO3 ?. Groundwater in the area is slightly alkaline and hard in nature. Electrical conductivity (EC) varies between 284 and 9,902?μS/cm with an average value of 1,599.4 μS/cm. The groundwater is highly mineralized with approximately 30 % of the samples having major ion concentrations above the WHO permissible limits. The NO3 ? concentration varies between 0.4 and 318.2 mg/l. The depth distribution of NO3 ? concentration shows higher concentration at shallow depths with a gradual decrease at deeper depths. As far as drinking water quality criteria are concerned, study shows that about 33 % of samples are unfit for use. A detailed assessment of groundwater quality in relation to agriculture use reveals that 21 % samples are unsuitable for irrigation. Using Piper’s classification, groundwater was classified into five different groups. Majority of the samples show Mix-Cl-SO4- and Na-Cl-types water. The abundances of Ca2+ and Mg2+ over alkalis infer mixed type of groundwater facies and reverse exchange reactions. The groundwater has acquired unique chemical characteristics through prolonged rock-water interactions, percolation of irrigation return water, and reactions at vadose zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号