首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
为了解石家庄市大气颗粒物中有机碳和元素碳的季节变化特征,对春、夏、秋、冬四季采集的PM_(10)、PM_(2.5)样品中的有机碳(OC)和元素碳(EC)进行了分析。结果表明,石家庄市PM_(10)、PM_(2.5)污染严重;PM_(10)、PM_(2.5)中ρ(OC)和ρ(EC)季节变化特征均为夏季春季秋季冬季。冬季PM_(10)中ρ(OC)和ρ(EC)分别为42.85和8.88μg/m~3;PM_(2.5)中ρ(OC)和ρ(EC)分别为41.2和8.59μg/m~3。PM_(2.5)中EC占比最高为3.9%,EC更容易在PM_(2.5)中富集;在四个季节中,冬季PM_(10)、PM_(2.5)中ρ(OC)/ρ(EC)为最高,分别为4.83和4.80,冬季取暖用燃煤加重了OC、EC的污染。冬季PM_(10)中二次有机碳ρ(SOC)为20.92μg/m~3,PM_(2.5)中ρ(SOC)为23.50μg/m~3。  相似文献   

2.
于2011—2017年在江苏省南京环境监测中心办公楼顶开展PM_(2.5)监测采样,分析其样品中OC、EC、水溶性离子和20余种无机元素等组分演变特征。结果表明,NO3-、SO24-、NH4+、OC、EC等是PM_(2.5)的主要组分,且大部分组分值随ρ(PM_(2.5))降低呈下降趋势; OC在2016—2017年成为占比最大的组分;ρ(NO_3~-)/ρ(SO_4~(2-))由0. 9上升至1. 3,ρ(OC)/ρ(EC)由3. 2上升至3. 6,均呈持续上升趋势;机动车污染和有机碳污染明显加重,南京大气污染类型从传统煤烟型污染向煤烟型与氧化型污染共同主导的复合型污染转变; K~-、Cl~-、SO_4~(2-)等水溶性离子和痕量元素K、Al、Ca、Na、Mg等值持续下降,说明工业污染减排、燃煤总量控制和污染治理、扬尘管控和秸秆禁烧效果显著。  相似文献   

3.
2015—2016年在百色市布设3个采样点采集PM_(10)和PM_(2.5)样品,分析其中有机碳(OC)和元素碳(EC)的含量。结果表明,PM_(10)和PM_(2.5)中OC、EC四季均值分别为15.0μg/m~3、5.55μg/m~3和11.7μg/m~3、4.72μg/m~3;OC与EC相关性不显著,存在不同的污染来源;OC/EC值多数2,存在二次污染,主要来源于柴油、汽油车尾气和燃煤的排放。由总碳质气溶胶(TCA)和8个碳组分丰度分析可知,百色市碳气溶胶(CA)来源于汽车尾气、道路扬尘、燃煤的排放。二次有机碳(SOC)在OC中的占比均75%,表明百色市大气颗粒物中OC以SOC为主,夜间污染重于昼间。  相似文献   

4.
南京大气细颗粒中有机碳与元素碳污染特征   总被引:3,自引:0,他引:3  
为了解南京城区大气细颗粒物中有机碳与元素碳的污染特征,在国控点草场门进行了连续一年的PM2.5采样,分析了有机碳(OC)、元素碳(EC)、ρ(OC)/ρ(EC)污染特征和变化规律。结果表明,采样期间有些PM2.5的日均值超过了《环境空气质量标准》(GB 3095-2012)二级标准,ρ(OC)/ρ(EC)为0.77~4.98,平均值为1.92。PM2.5样品中OC约占18%、EC约占9%。  相似文献   

5.
选取2015年珠海市国控监测站ρ(PM_(2.5))数据,分析PM_(2.5)中有机碳(OC)、元素碳(EC)、水溶性离子组分等化学组成,ρ(PM_(2.5))时空分布特征,以及与气象因素的相互关系。结果表明,2015年珠海市PM_(2.5)年均值为31.0μg/m3,表现出显著的时间分布规律,月均值呈现"V"型趋势,PM_(2.5)中主要化学组分是有机物(OM),占总质量的34.0%,其次是硫酸根(SO2-4),占总质量的26.9%,具有明显的季节分布特征,呈现冬高夏低分布;ρ(PM_(2.5))日变化呈现双峰型分布,其值工作日显著高于非工作日;ρ(PM_(2.5))与平均温度、相对湿度、风速呈现负相关关系,与气压呈现显著正相关关系;珠海市ρ(PM_(2.5))空间分布总体呈现"东高西低,北重南轻"变化趋势,有机物、SO2-4和NH+4空间分布呈现东部高于西部趋势,颗粒物浓度受地形、气候因素和海域环境等影响呈现多样化分布趋势。  相似文献   

6.
西宁市城区冬季PM2.5和PM10中有机碳、元素碳污染特征   总被引:1,自引:0,他引:1  
2014年11月—2015年1月对西宁市冬季开展PM_(2.5)和PM_(10)的连续监测。利用DRI 2001A型热光碳分析仪(美国)对有机碳和元素碳进行分析,结果表明:西宁市冬季PM_(2.5)和PM_(10)中碳气溶胶所占比例分别为33.13%±6.83%、24.21%±6.27%,说明碳气溶胶主要集中在PM_(2.5)中;OC/EC值均大于2,说明西宁市大气中存在二次污染;SOC占PM_(2.5)和PM_(10)的质量浓度比例分别为46.50%和57.40%,PM_(2.5)中SOC浓度占PM_(10)中SOC浓度的61.88%,说明SOC主要存在于PM_(2.5)中,且SOC形成的二次污染和直接排放的一次污染都是西宁市碳气溶胶的主要来源;与其他城市比较发现,西宁市冬季PM_(2.5)中的碳气溶胶含量普遍高于其他城市,PM_(10)中OC质量浓度相对其他城市较高,EC质量浓度偏低;OC和EC的相关性不显著,说明来源不统一;进一步对OC和EC各组分质量浓度进行分析知,西宁市冬季碳气溶胶主要来源于机动车汽油排放、燃煤和生物质燃烧。  相似文献   

7.
在冬季采暖期采集北京大气中的PM_(2.5)样品,利用自动称重系统AWS-1和热/光碳分析仪测定样品中PM_(2.5)和OC/EC,研究碳组分的变化特征,并通过OC/EC的值和单颗粒气溶胶质谱仪(SPAMS 0515)分析大气颗粒物中碳气溶胶的可能来源。结果表明:PM_(2.5)污染天气的OC、EC在PM_(2.5)中的占比要比清洁天气时低,其中SOC在PM_(2.5)中的占比由清洁天气时的22.9%减少到了重污染天气的15.4%,这是因为大气中的PM_(2.5)有较强的消光作用,导致气溶胶的氧化能力降低,造成了SOC的生成量减少;通过分析OC/EC值表明,冬季采暖期北京大气碳气溶胶的主要来源为机动车尾气和燃煤,这与SPAMS 0515在线解析的结果一致。采用SPAMS 0515进行在线OC、EC分析,在PM_(2.5)质量浓度≤250μg/m3时同手工方法有较好的相关性。解析结果表明,燃煤和机动车尾气是北京冬季采暖期的首要污染物来源,占比分别为34.0%和26.4%。  相似文献   

8.
于2019年10月—2020年2月在盐城市开展大气PM_(2.5)离线监测,对PM_(2.5)的浓度变化、质量平衡、组分及来源进行了分析。结果表明,监测期间盐城市ρ(PM_(2.5))月均值为43.32~62.59μg/m~3,其中1月最高;监测期间ρ(PM_(2.5))平均值为54.25μg/m~3,质量重建后该值为52.38μg/m~3,与实测值的相关性达到0.98; PM_(2.5)占比最多的成分是硫酸盐、硝酸盐和铵盐(SNA); m(NO_3~-)/m(SO_4~(2-))的平均值为2.16,说明监测期间盐城市机动车相比固定源对NO_2和SO_2有更高的贡献;通过主成分因子分析,可知盐城市秋、冬季节PM_(2.5)主要来源于土壤和扬尘源、燃烧源以及二次无机源。  相似文献   

9.
为研究重庆市大气PM_(2.5)中二次有机气溶胶污染特征,于2013年1—12月运用URG-3000ABC型中流量颗粒物采样仪连续同步采集重庆市主城区大气PM_(2.5)样品,选取OC/EC比值对PM_(2.5)中的SOC污染进行估算,结果表明,该市主城区PM_(2.5)中SOC年平均质量浓度为12.5μg/m3,占OC质量浓度的50.0%,占PM_(2.5)质量浓度的10.1%,SOC质量浓度为冬季秋季夏季春季。机动车排放是SOC前体物的主要来源。  相似文献   

10.
采用设置在上海市中心城区交通主干道旁空气质量自动监测站2018年1—12月的观测数据,分析黑碳气溶胶(BC)污染特征及其与PM_(2.5)、SO_2、NO_x、CO、O_3、苯、甲苯、乙苯、二甲苯和气象参数的相关性。结果表明,观测期间内,BC小时均值为(3 038±22) ng/m~3,ρ(BC)在ρ(PM_(2. 5))中占比为(11. 48±0. 12)%。日内ρ(BC)变化呈双峰型,各月份之间ρ(BC)变化不大。ρ(BC)与风速呈负相关,与PM_(2. 5)、NO_x、CO、苯、甲苯、乙苯和二甲苯呈正相关。  相似文献   

11.
Ambient aerosols were collected during 2000–2001 in Gainesville, Florida, using a micro-orifice uniform deposit impactor (MOUDI) to study mass size distribution and carbon composition. A bimodal mass distribution was found in every sample with major peaks for aerosols ranging from 0.32 to 0.56 μm, and 3.2 to 5.6 μm in diameter. The two distributions represent the fine mode (<2.5 μm) and the coarse mode (>2.5 μm) of particle size. Averaged over all sites and seasons, coarse particles consisted of 15% carbon while fine particles consisted of 22% carbon. Considerable variation was noted between winter and summer seasons. Smoke from fireplaces in winter appeared to be an important factor for the carbon, especially the elemental carbon contribution. In summer, organic carbon was more abundant. The maximum secondary organic carbon was also found in this season (7.0 μg m−3), and the concentration is between those observed in urban areas (15–20 μg m−3) and in rural areas (4–5 μg m−3). However, unlike in large cities where photochemical activity of anthropogenic emissions are determinants of carbon composition, biogenic sources were likely the key factor in Gainesville. Other critical factors that affect the distribution, shape and concentration were precipitation, brushfire and wind.  相似文献   

12.
通过分析新疆准东经济技术开发区各行业的二氧化碳排放量及排放特征,研究新疆准东经济技术开发区碳达峰碳中和的实现路径。分析结果显示,准东经济技术开发区最主要的二氧化碳排放源是化石燃料燃烧,其对二氧化碳排放量的贡献比例在95.2%以上。能源活动二氧化碳排放量占总排放量的98.5%以上;工业生产过程排放的二氧化碳较少,占比在1.5%以下。新疆准东经济技术开发区主要二氧化碳排放行业是煤电、电解铝、煤化工、硅基新材料。在此基础上,结合各行业特点,提出发展园区循环经济、制定低碳行业标准和培育低碳产业等详细对策。  相似文献   

13.
东营春季PM10中有机碳和元素碳的污染特征及来源   总被引:2,自引:1,他引:1  
2010年4月采集了东营市大气PM10样品,测定了PM10的浓度,并采用IMPROVE-TOR方法准确测量了样品中的8个碳组分.结果表明,采样期间,东营市大气PM10的平均浓度为(147.02±56.22) μg/m3;PM10中有机碳(0C)、元素碳(EC)浓度平均值分别为11.82、3.68 μg/m 3;PM10中OC和EC显著相关,表明OC、EC的来源相同;所有采样点PM10中OC/EC均大于2.15,表明存在二次有机碳(SOC)的贡献;PM10中SOC平均质量浓度是3.91 μg/m3,占OC质量浓度的33.08%;通过计算PM10中8个碳组分丰度,初步判断东营市颗粒物中碳的主要来源是汽车尾气、道路扬尘和燃煤.  相似文献   

14.
2020年3月2日—2021年2月28日在安庆市政务服务中心楼顶设置监测点,手工采集PM2.5样品,运用多波段碳分析仪(DRI Model 2015)分析样品中碳质组分有机碳(OC)和元素碳(EC)质量浓度;利用OC/EC法、相关分析法和主成分因子分析法对PM2.5中碳质组分的污染特征和可能来源进行解析。结果显示:安庆市手工采样期间PM2.5平均质量浓度为(45.9±28.1)μg/m3,OC和EC的平均浓度分别为(8.0±3.4)、(1.4±0.6)μg/m3,在PM2.5中占比为17.4%、3.1%。四季OC平均浓度分布为冬季(9.7±4.2)μg/m3 >春季(9.0±2.5)μg/m3 >秋季(8.3±2.9)μg/m3 >夏季(5.1±1.6)μg/m3,EC平均浓度分布为冬季(1.7±0.5)μg/m3 >春季(1.7±0.6)μg/m3 >秋季(1.3±0.4)μg/m3 >夏季(0.8±0.3)μg/m3。OC/EC范围为3.11~12.14,平均值为5.83,表明安庆市存在二次有机碳(SOC),SOC均值为(2.89±1.94)μg/m3,分别占OC和PM2.5浓度的36.1%、6.3%;四季OC、EC相关性不显著,r均小于0.85,说明安庆市的碳质组分较复杂;在不同空气质量等级条件下,OC质量浓度随着污染等级的升高而逐渐升高,EC质量浓度随着污染等级升高而先升高后降低。利用主成分分析法进行来源解析发现,道路扬尘、燃煤、柴油车尾气是碳质组分的主要来源。  相似文献   

15.
利用2014年“国家公祭日”期间南京市草场门测点OC和EC在线监测仪器,分析了PM2.5中碳组分污染特征,结果表明:“国家公祭日”保障期间OC、EC的平均质量浓度为9.6 μg/m3和3.9 μg/m3,两者占PM2.5质量的19%,是PM2.5的重要组成部分;“国家公祭日”期间OC/EC(质量浓度比)的平均值为2.47,表明大气中存在二次反应生成的SOC,通过分析管控不同阶段EC与OC以及EC与SO2、NO2的相关性,表明两者受本地机动车影响较大;通过气流后向轨迹聚类分析表明,“国家公祭日”管控期间来自周边安徽、江苏、浙江交界处的气流对应的EC浓度最高,为7.14 μg/m3,进一步运用浓度权重轨迹(CWT)方法分析EC的潜在贡献源区,表明对南京EC输送强潜在源区主要在安徽省东南部,集中在芜湖、宣城、黄山一线,其贡献可超过8 μg/m3。  相似文献   

16.
利用在线高分辨率仪器对2014-2018年南京市PM2.5中有机碳(OC)、元素碳(EC)进行了连续监测,结果表明:离线分析法与在线分析法对OC、EC的测定结果具有很好的线性相关性,离线分析的EC、OC浓度高于在线自动监测值;2014-2018年南京OC与EC的平均质量浓度分别为(6. 38±3. 91)μg/m^3和(3. 12±1. 76)μg/m^3,整体呈下降趋势,冬季OC与EC均较高,夏季两者质量浓度较低。OC和EC均呈现夜间高、白天低的日变化规律,OC与EC第一个峰值均出现在08:00左右,OC第二个峰值出现在20:00前后;夏季OC与EC相关性最低,冬季最高,NO2、CO与OC、EC的相关性总体高于SO2,表明燃料燃烧对碳气溶胶有一定贡献,但没有交通源的贡献显著,夏季O3与OC呈现一定程度的正相关性。利用最小相关系数法(MRS)计算大气OC中一次有机碳(POC)和二次有机碳(SOC),结果显示OC中以POC为主,但SOC呈逐年上升趋势,2018年SOC质量浓度达1. 96μg/m3,在OC中占比达31. 9%,后续颗粒物污染治理的重点可能应关注VOCs。  相似文献   

17.
大气颗粒物样品中有机碳和元素碳的测定   总被引:18,自引:5,他引:13  
采用元素分析仪测定大气颗粒物样品中有机碳、元素碳。应用商业化仪器元素分析仪 ,在燃烧炉温度为 4 50°C时 ,一步测出样品中有机碳的含量 ;再运用加酸的方法除去样品中的碳酸盐 ,然后在燃烧炉温度为 950°C时测出样品中有机碳、元素碳含量之和。通过差减计算 ,得出元素碳的值。有机碳、元素碳测量的标准偏差平均值分别为 0 2 5%、0 50 %。  相似文献   

18.
2004年夏季在广州四个不同区域采集大气颗粒物样品,参照美国环保局(US EPA)标准方法测定其中二噁的含量,采用热分解光学分析法测定元素碳和有机碳的含量。结果表明,花都、荔湾、天河、黄埔大气颗粒物中二噁浓度(毒性当量)平均值分别为3815fg/m3(104.6fg I-TEQ/m3)、12777fg/m3(430.5fg I-TEQ/m3)、6963fg/m3(163.7fg I-TEQ/m3)、10953fg/m3(769.3fg I-TEQ/m3)。简单地分析了广州大气颗粒物中二噁的含量特征,以及与元素碳、有机碳之间的相关性。  相似文献   

19.
The concentrations of EC, BC and dust aerosols were determined for atmospheric samples collected from an observation station in Xi'an, China. The results show that the averaged correlation coefficient between EC and BC was founded to be 0.72 with 0.81 (n = 49) in autumn, 0.70 (n = 112) in winter and 0.69 (n = 57) in spring, respectively. Absorption coefficients of dust aerosol were estimated to be 2.7 m2 g−1 in autumn and 4.4 m2 g−1 in winter. The comparison of absorption coefficients of dust aerosol with those of BC implies that BC is the principal light-absorbing aerosol over Xi'an atmosphere. By combining thermal analysis of elemental carbon and dust contents in the aerosol samples, however, the fraction of dust absorption to total light absorption is estimated to be 19% in autumn and 31% in winter, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号