首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
釜溪河为沱江一级支流,在自贡城区段设有国考碳研所断面。收集碳研所断面近10年来水质自动站数据,分析溶解氧(DO)变化特征,采样调查釜溪河自贡城区段水质及河道底泥污染状况,采用相关性分析、数值模拟等,研究分析釜溪河自贡城区段溶解氧分布特征及碳研所断面季节性低氧成因。研究结果表明,碳研所断面的溶解氧质量浓度变化特征呈现春末夏初最低,白天高晚上低的特征。釜溪河碳研所断面河水耗氧类污染物质量浓度较沱江流域内其他断面高,耗氧强度较大,溶解氧质量浓度较沱江流域其他断面偏低;其次,研究河段中釜溪河污水厂以下河段受污水厂低氧水排入和金子凼堰底层低氧水下泄影响,其溶解氧水平整体较污水厂以上河段低;最后,河段底泥有机质含量较高,春夏季气温升高将导致微生物分解活性增强大量消耗溶解氧,同时,闸坝和外来水体排入的水文扰动造成污水厂以下河段水温梯度弱,表层溶解氧易受底层低氧水影响,促使断面形成季节性低氧现象。溶解氧预测模型结果也进一步证实了温度变化和垂向温度梯度弱是碳研所断面溶解氧质量浓度季节性偏低的主要因素。  相似文献   

2.
The subtropical Hong Kong (HK) waters are located at the eastern side of the Pearl River Estuary. Monthly changes of water quality, including nutrients, dissolved oxygen (DO), and phytoplankton biomass (Chl-a) were routinely investigated in 2003 by the Hong Kong Environmental Protection Department in three contrasting waters of HK with different prevailing hydrodynamic processes. The western, eastern, and southern waters were mainly dominated by nutrient-replete Pearl River discharge, the nutrient-poor coastal/shelf oceanic waters, and mixtures of estuarine and coastal seawater and sewage effluent of Hong Kong, respectively. Acting in response, the water quality in these three contrasting areas showed apparently spatial–temporal variation pattern. Nutrients usually decreased along western waters to eastern waters. In the dry season, the water column was strongly mixed by monsoon winds and tidal currents, which resulted in relatively low Chl-a (<5 μg l?1) and high bottom DO (>4 mg l?1), suggesting that mixing enhanced the buffering capacity of eutrophication in HK waters. However, in the wet season, surface Chl-a was generally >10 μg l?1 in southern waters in summer due to halocline and thermohaline stratification, adequate nutrients, and light availability. Although summer hypoxia (DO <2 mg l?1) was episodically observed near sewage effluent site and in southern waters induced by vertical stratification, the eutrophication impacts in HK waters were not as severe as expected owing to P limitation and short water residence time in the wet season.  相似文献   

3.
Different water quality management alternatives, including conventional wastewater treatment, transportation of wastewater, flow augmentation, low-cost treatment with reuse, and wetlands, are evaluated by using a verified dissolved oxygen (DO) model for the Ravi River. Biokinetic rate coefficients of the Ravi River for both the carbonaceous and nitrogenous oxygen-demanding wastes are adjusted, keeping in view the type and level of wastewater treatment. The conventional activated sludge process with nitrification comes out to be the most expansive alternative to meet the DO standard of 4 mg/L. Additional treatment cost is required to maintain un-ionized ammonia levels <0.02 mg/L, which corresponds to achieving treatment levels of 5 mg/L of DO in the river. Under critical low-flow conditions (i.e., minimum average seven consecutive days) of 9.2 m3/s, a flow augmentation of 10 m3/s can reduce 30 % of the cost with conventional wastewater treatment. Transportation of wastewater from the city of Lahore is a cost-effective alternative with 2.5 times less cost than the conventional process. Waste stabilization ponds (WSP) technology is a low-cost solution with 3.5 times less cost as compared to the conventional process. Further reduction in pollution loads to the Ravi River can be achieved by reusing WSP effluents for irrigation in the near proximity of Lahore along the Ravi River. The study results show that, for highly polluted rivers with such extreme flow variations as in case of the Ravi River, meeting un-ionized ammonia standards can reduce the efforts required to develop carbonaceous biochemical oxygen demand-based waste load allocations.  相似文献   

4.
A dissolved oxygen (DO) model is calibrated and verified for a highly polluted River Ravi with large flow variations. The model calibration is done under medium flow conditions (431.5 m3/s), whereas the model verification is done using the data collected during low flow conditions (52.6 m3/s). Biokinetic rate coefficients for carbonaceous biochemical oxygen demand (CBOD) and nitrogenous biochemical oxygen demand (NBOD) (i.e, K cr and K n ) are determined through the measured CBOD and ammonia river profiles. The calculated values of K cr and K n are 0.36 day?1 and 0.34 day?1, respectively. The close agreement between the DO model results and the field values shows that the verified model can be used to develop DO management strategies for the River Ravi. The biokinetic coefficients are known to vary with degree of treatment (DOT) and therefore need to be adjusted for a rational water quality management model. The effect of this variation on level of treatment has been evaluated by using the verified model to attain a DO standard of 4 mg/L in the river using the biokinetic rate coefficients as determined during the model calibration and verification process. The required DOT in this case is found to be 96 %, whereas the DOT is 86 % if adjusted biokinetic rate coefficients are used to reflect the effect of wastewater treatment. The cost of wastewater treatment is known to increase exponentially as the removal efficiency increases; therefore, the use of appropriate biokinetic coefficients to manage the water quality in rivers is important.  相似文献   

5.
Mountainous areas in the northern Pakistan are blessed by numerous rivers that have great potential in water resources and hydropower production. Many of these rivers are unexploited for their water resource potential. If the potential of these rivers are explored, hydropower production and water supplies in these areas may be improved. The Indus is the main river originating from mountainous area of the Himalayas of Baltistan, Pakistan in which most of the smaller streams drain. In this paper, the hydrology of the mountainous areas in northern Pakistan is studied to estimate flow pattern, long-term trend in river flows, characteristics of the watersheds, and variability in flow and water resource due to impact of climate change. Eight watersheds including Gilgit, Hunza, Shigar, Shyok, Astore, Jhelum, Swat, and Chitral, Pakistan have been studied from 1960 to 2005 to monitor hydrological changes in relation to variability in precipitation, temperature and mean monthly flows, trend of snow melt runoff, analysis of daily hydrographs, water yield and runoff relationship, and flow duration curves. Precipitation from ten meteorological stations in mountainous area of northern Pakistan showed variability in the winter and summer rains and did not indicate a uniform distribution of rains. Review of mean monthly temperature of ten stations suggested that the Upper Indus Basin can be categorized into three hydrological regimes, i.e., high-altitude catchments with large glacierized parts, middle-altitude catchments south of Karakoram, and foothill catchments. Analysis of daily runoff data (1960-2005) of eight watersheds indicated nearly a uniform pattern with much of the runoff in summer (June-August). Impact of climate change on long-term recorded annual runoff of eight watersheds showed fair water flows at the Hunza and Jhelum Rivers while rest of the rivers indicated increased trends in runoff volumes. The study of the water yield availability indicated a minimum trend in Shyok River at Yogo and a maximum trend in Swat River at Kalam. Long-term recorded data used to estimate flow duration curves have shown a uniform trend and are important for hydropower generation for Pakistan which is seriously facing power crisis in last 5 years.  相似文献   

6.
Sediment oxygen demand (SOD) has become an integral part of modeling dissolved oxygen (DO) within surface water bodies. Because very few data on SOD are available, it is common for modeler to take SOD values from literature for use within DO models. SOD is such an important parameter in modeling DO that this approach may lead to erroneous results. This paper reported on developing an approach for monitoring sediment oxygen demand conducted with undisturbed sediment core samples, where the measured results were incorporated into a water quality model for simulating and assessing dissolved oxygen distribution in the Xindian River of northern Taiwan. The measured results indicate that a higher freshwater discharge results in a lower SOD. Throughout a 1-year observation in 2004, the measured SOD ranged from 0.367 to 1.246 g/m(2)/day at the temperature of 20°C. The mean values of the measured SOD at each station were adopted in a vertical two-dimensional water quality model to simulate the DO distribution along the Xindian River. The simulating results accurately depict the field-measured DO distribution during the low and high flow conditions. Model sensitivity analyses were also conducted with increasing and decreasing SOD values for the low and high flow conditions and revealed that SOD had a significant impact on the DO distribution along the Xindian River. The present work combined with field measurements and numerical simulation should assist in river water quality management.  相似文献   

7.
Delta regions of the Cauvery River basin are one of the significant areas of rice production in India. In spite of large-scale utilization of the river basin for irrigation and drinking purposes, the lack of appropriate water management has seemingly deteriorated the water quality due to increasing anthropogenic activities. To assess the extent of deterioration, physicochemical characteristics of surface water were analyzed monthly in select regions of Cauvery Delta River basin, India, during July 2007 to December 2007. Total dissolved solids, chemical oxygen demand, and phosphate recorded maximum levels of 1,638, 96, and 0.43 mg/l, respectively, exceeding the permissible levels at certain sampling stations. Monsoonal rains in Cauvery River basin and the subsequent increase in river flow rate influences certain parameters like dissolved solids, phosphate, and dissolved oxygen. Agricultural runoff from watershed, sewage, and industrial effluents are suspected as probable factors of water pollution.  相似文献   

8.
This paper exemplifies the application of U.S. Environmental Protection Agency's water quality model, QUAL2E-UNCAS in assessing the pollution risk of a tropical river. The rivers selected for study were Hindon (main river) and Kali (its tributary) flowing through Uttar Pradesh district of Northern India. The model application to the two rivers revealed poor water quality in terms of dissolved oxygen (DO), biochemical oxygen demand (BOD), and ammonia concentrations. Monte Carlo simulations were performed on two different data sets that were confirming to marked seasonal variations. The Monte Carlo simulation (MCS) derived 95 % confidence level for these parameters strengthened the fact that all point sources were exploiting the assimilative capacity of the two rivers. In order to ascertain probabilistically the risk at which two rivers were falling short of desired water quality, probability curves based on effluent standards and available water quality were prepared. On mapping the two curves, it was found that at 95 % probability, Hindon River was flowing with 53 to 100 % less of desired DO, up to 100 % more of minimum BOD, and probability with which ammonia concentration would not be more than the desired concentration was found to fall downstream. The Kali headwaters showed better quality during low river temperature but worsened downstream with up to 100 % violation in all the above observed parameters. It is expected that similar studies wherein the dependable levels with which a polluted river can be understood to fall short of desired water quality can prove to be useful in ascertaining the efficacy of effluent standards and/or follow-up of pollution control measures.  相似文献   

9.
Guwahati, the lone city on the bank of the entire midstream of the Brahmaputra River, is facing acute civic problem due to severe depletion of water quality of its natural water bodies. This work is an attempt towards water quality assessment of a relatively small tributary of the Brahmaputra called the Bharalu River flowing through the city that has been transformed today into a city drainage channel. By analyzing the key physical, chemical and biological parameters for samples drawn from different locations, an assessment of the dissolved load and pollution levels at different segments in the river was made. Locations where the contaminants exceeded the permissible limits during different seasons were identified by examining spatial and temporal variations. A GIS developed for the watershed with four layers of data was used for evaluating the influence of catchment land use characteristics. BOD, DO and total phosphorus were found to be the sensitive parameters that adversely affected the water quality of Bharalu. Relationship among different parameters revealed that the causes and sources of water quality degradation in the study area were due to catchments input, anthropogenic activities and poor waste management. Elevated levels of total phosphorus, BOD and depleted DO level in the downstream were used to develop an ANN model by taking total phosphorus and BOD as inputs and dissolved oxygen as output, which indicated that an ANN based predictive tool can be utilized for monitoring water quality in the future.  相似文献   

10.
Seasonal spatial and temporal changes of selected eco-chemical parameters in section of the Danube River flowing through Serbia were analyzed. Data for electrical conductivity (EC), dry and suspended matter, residue on ignition, chemical oxygen demand (COD), biochemical oxygen demand (BOD-5), ultraviolet extinction, dissolved oxygen (DO), oxygen saturation, pH, nitrates, total phosphorus, and nitrogen were collected between 1992 and 2006. The use of monthly medians combined with linear regression and two-sided t test has been proven to be the best approach for resolving trends from natural variability of investigated parameters and for determining trend significance. Patterns of temporal changes between different months were examined. It was also determined that spatial trends of some parameters oscillate in predictable manner, increasing in one part of the year and declining in the other. Regression slope coefficients, an excellent indicator for determining when the water quality is changing the most along the course of the Danube, reach their maximum during summer for temperature (t), electric conductivity, nitrates, and total N, while in the same season suspended matter, COD, BOD-5, DO, and oxygen saturation coefficients reach their minimum. Correlations for used data sets of selected parameters were analyzed for better understanding of their behavior and mutual relations. It was observed that as Danube flows through Serbia, its general eco-chemical status either stagnates or improves, but the rate of river self-purification often depends on the season of the year.  相似文献   

11.
Diel dissolved oxygen (DO) time series measured continuously using proximal sensors in situ for a temperate lake were denoised using discrete wavelet transform (DWT) with the orthogonal wavelet families of coiflet, daubechies, and symmlet with order of 10. Diel DO time series denoised were modeled using nine temporal artificial neural networks (ANNs) as a function of water level, water temperature, electrical conductivity, pH, day of year, and hour. Our results showed that time-lag recurrent network (TLRN) using denoised data emulated diel DO dynamics better than the best-performing TLRN using the original data, time-delay neural network (TDNN), and recurrent network (RNN). Daubechies basis dealt with diel DO data slightly better than the other bases given its coefficient of determination (r 2?=?87.1 %), while symmlet performed slightly better than the other bases in terms of root mean square error (RMSE?=?1.2 ppm) and mean absolute error (MAE?=?0.9 ppm).  相似文献   

12.
This article presents a comparison of two adaptive neuro-fuzzy inference systems (ANFIS)-based neuro-fuzzy models applied for modeling dissolved oxygen (DO) concentration. The two models are developed using experimental data collected from the bottom (USGS station no: 420615121533601) and top (USGS station no: 420615121533600) stations at Klamath River at site KRS12a nr Rock Quarry, Oregon, USA. The input variables used for the ANFIS models are water pH, temperature, specific conductance, and sensor depth. Two ANFIS-based neuro-fuzzy systems are presented. The two neuro-fuzzy systems are: (1) grid partition-based fuzzy inference system, named ANFIS_GRID, and (2) subtractive-clustering-based fuzzy inference system, named ANFIS_SUB. In both models, 60 % of the data set was randomly assigned to the training set, 20 % to the validation set, and 20 % to the test set. The ANFIS results are compared with multiple linear regression models. The system proposed in this paper shows a novelty approach with regard to the usage of ANFIS models for DO concentration modeling.  相似文献   

13.
Knowledge of water quality conditions is essential in assessing the health of riverine ecosystems. The goal of this study is to determine the degree to which water quality variables are related to precipitation and air temperature conditions for a segment of the Pearl River Basin near Bogalusa, LA, USA. The AQUATOX ecological fate simulation model is used to estimate daily total nitrogen, total phosphorus, and dissolved oxygen concentrations over a 2-year period. Daily modeled output for each variable was calibrated against reliably measured data to assess the accuracy. Observed data were plotted against simulated data for controlled and perturbed models for validation, and stepwise multiple regression analysis was used to quantify the relationships between the water quality and meteorological variables. Results suggest that daily dissolved oxygen is significantly negatively correlated to concurrent daily mean air temperature with a total explained variance of 0.679 (p?<?0.01), and monthly dissolved oxygen is significantly negatively correlated to monthly mean air temperature with a total explained variance of 0.567 (p?<?0.01). Total mean monthly phosphorus concentration is significantly positively related to the previous month's precipitation with a total explained variance of 0.302 (p?<?0.01). These relationships suggest that atmospheric conditions have a strong influence on water quality in the Pearl Basin. Therefore, environmental planners should expect that future climatic changes are likely to alter water quality.  相似文献   

14.
Surface water quality is vulnerable to pollution due to human activities. The upper reach of the Hun River is an important water source that supplies 52 % of the storage capacity of the Dahuofang Reservoir, the largest reservoir for drinking water in Northeast China, which is suffering from various human-induced changes in land use, including deforestation, reclamation/farming, urbanization and mine exploitation. To investigate the impacts of land use types on surface water quality across an anthropogenic disturbance gradient at a local scale, 11 physicochemical parameters (pH, dissolved oxygen [DO], turbidity, oxygen redox potential, conductivity, biochemical oxygen demand [BOD5], chemical oxygen demand [COD], total nitrogen [TN], total phosphorus [TP], NO 3 ? -N, and NH 4 + -N) of water from 12 sampling sites along the upper reach of the Hun River were monitored monthly during 2009–2010. The sampling sites were classified into four groups (natural, near-natural, more disturbed, and seriously disturbed). The water quality exhibited distinct spatial and temporal characteristics; conductivity, TN, and NO 3 ? -N were identified as key parameters indicating the water quality variance. The forest and farmland cover types played significant roles in determining the surface water quality during the low-flow, high-flow, and mean-flow periods based on the results of a stepwise linear regression. These results may provide incentive for the local government to consider sustainable land use practices for water conservation.  相似文献   

15.
Various physico-chemical characteristics of the River Yamuna flowing in Haryana through Delhi were studied in the summer (April 1998) and winter (Jan.-Feb. 1999). Ecological parameters like dissolved oxygen (DO), pH, nitrate (NO3-), sulfate (SO4(2-)), and phosphate (PO4(3-)), were analyzed and compared with standard permissible limits to assess the best-designated use of the river water for various purposes. The river in Delhi upstream was of better quality whereas the Delhi downstream stretch was polluted as indicated by very low DO and high total dissolved solids (TDS), electric conductivity (EC), total hardness, Na+, K+, Cl-, F- and SO4(2-). The differences in various parameters were statistically significant (p < 0.01) when compared for the Delhi upstream and downstream stretches of the river, particularly in summer. DO and TDS were found to be two important parameters, which showed strong correlation with several other parameters and hence can serve as good indices of river water quality. The river tended to recover from the pollution stress after flowing through a distance of about 80 km downstream of Delhi.  相似文献   

16.
The water quality of the Akyatan Lagoon was characterized using hydrochemical methodology. The lagoon is located on the Mediterranean coast and is the largest wetland ecosystem in Turkey. In addition, the lagoon is classified as a hyper-salinity wetland. Water samples were collected monthly between December 2007 and November 2008. Eleven stations within the lagoon were determined, and triplicate grab samples were obtained from each station to characterize water quality as follows: T °C, pH, total alkalinity (TAlk), dissolved oxygen (DO), total dissolved solids (TDS), salinity, electrical conductivity (EC), and main anions, including chloride (Cl?), nitrates (NO3 ?), and sulfate (SO4 2?). Results from selected stations indicated varying TDS, EC, salinity, and Cl? concentrations, from 20,892 to 175,824 mg/L, from 35.7 to 99.6 mS/cm, from 22.3 to 71.0 ppt, and from 14,819 to 44,198 mg Cl?/L, respectively. Data indicated that the spatial distribution of water quality parameters was significantly affected by freshwater input via the constructed drainage channels which collect water from a catchment area and discharge water into the lagoon as a point source, thus preventing drainage water to reach the lagoon as a nonpoint source.  相似文献   

17.
Environmental monitoring data for planning, implementing and evaluating the Total Maximum Daily Loads (TMDL) management system have been measured at about 8-day intervals in a number of rivers in Korea since 2004. In the present study, water quality parameters such as Suspended Solids (SS), Biochemical Oxygen Demand (BOD), Dissolved Oxygen (DO), Total Nitrogen (TN), and Total Phosphorus (TP) and the corresponding runoff were collected from six stations in the Yeongsan River basin for six years and transformed into monthly mean values. With the primary objective to understand spatiotemporal characteristics of the data, a methodologically systematic application of a Self-Organizing Map (SOM) was made. The SOM application classified the environmental monitoring data into nine clusters showing exclusively distinguishable patterns. Data frequency at each station on a monthly basis identified the spatiotemporal distribution for the first time in the study area. Consequently, the SOM application provided useful information that the sub-basin containing a metropolitan city is associated with deteriorating water quality and should be monitored and managed carefully during spring and summer for water quality improvement in the river basin.  相似文献   

18.
The seasonal effects of untreated and treated municipal sewage on the nutrients-nitrate (NO(3)), phosphate (PO(4)), sulphate (SO(4)), and the biochemical oxygen demand (BOD), chemical oxygen demand (COD) and dissolved oxygen (DO) of the receiving urban canal, the Buckingham canal at Kalpakkam (Tamil Nadu, India) was monitored monthly during pre- monsoon-2005 to post-monsoon-2006. The NO(3), PO(4) and SO(4) contents were higher in the downstream than that of the upstream of the outfall points of treated as well as untreated sewage, of the canal. The NO(3) and PO(4) contents were higher during summer than that of monsoon; however the SO(4) was higher during winter and lower during summer in the canal water. The BOD and COD were lower and DO was higher at the upstream than that of downstream of the canal. The concentrations of BOD and COD were higher during summer season, which decreased during monsoon season, while the DO decreased during the summer season and increased in monsoon season in the canal water. Cluster analysis applied to the six sampling points of the canal, has grouped them based on the water quality similarities.  相似文献   

19.
于2018—2021年对南京市及国考断面七桥瓮进行水质调查,分析其溶解氧变化特征,采用水质水量联合评价及皮尔逊相关分析法,并结合水文气象等相关信息,对南京市地表水溶解氧分布特征及国考七桥瓮断面低氧成因进行研究分析。结果表明,南京市地表水溶解氧浓度夏季最低,中心主城区及附近区域溶解氧浓度均相对较低。七桥瓮断面溶解氧浓度在2.25~11.07 mg/L,其中5—9月溶解氧易出现超标波动。溶解氧浓度昼间高于夜间,与pH值呈正相关关系,与水温、高锰酸盐指数、氨氮、总磷均呈负相关关系。水温和上游来水带入的耗氧污染物是七桥瓮断面溶解氧偏低的主要成因,其中,溶解氧浓度与水温相关性最为显著。研究结论可为七桥瓮断面稳定达标提供基础支撑,为秦淮河流域精准治污提供技术依据,为南京市水环境多源同治提供治理思路。  相似文献   

20.
The coastal waters of American Samoa’s five high islands (Tutuila, Aunu’u, Ofu, Olosega, and Ta’u) were surveyed in 2004 using a probabilistic design. Water quality data were collected from the near-shore coastal habitat, defined as all near-shore coastal waters including embayments, extending out to 1/4 mile off-shore. Hydrography and water column samples were collected, and water quality data were compared to the Territorial water quality standards for pH, dissolved oxygen (DO), Enterococcus, chlorophyll a, water clarity, total nitrogen, and total phosphorus. All station measurements for pH, DO, and Enterococcus satisfied the local water quality standards, although some fraction of the Territory could not be assessed for either DO or Enterococcus. With respect to chlorophyll a, 66 ± 18% of Territory coastal waters complied with the standard, while 34 ± 18% failed to comply with the standard. For water clarity, 54 ± 18% of the Territorial waters complied with the standard while 42 ± 7% failed to comply. Territorial waters satisfied the standards for total nitrogen and phosphorus 72 ± 17% and 92 ± 10%, respectively. These data provide the first “big-picture” view of water quality in the near shore region around the high islands of American Samoa. While the picture is encouraging, these data suggest emerging water quality concerns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号