首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2018年4月至2019年3月对杭州市城区大气中117种挥发性有机物(VOCs)开展了为期一年的手工采样观测,分析了VOCs各组分的浓度特征、臭氧生成潜势(OFP)和二次有机气溶胶(SOA)生成潜势。结果显示,观测期杭州市大气VOCs体积分数均值为(56.72±29.56)×10-9,含氧挥发性有机物(OVOCs)、烷烃和卤代烃是其主要组分,分别占33.86%、30.70%、15.73%。VOCs体积分数前10位的物种为丙烷、甲醛、异丁烷、乙烷、乙酸乙酯、二氯甲烷、正丁烷、丙酮、甲苯和1,2-二氯乙烷。杭州市VOCs的OFP为135.18×10-9,各VOCs组分的OFP贡献为OVOCs(45%) > 芳香烃(22%) > 烯烃和炔烃(21%) > 烷烃(11%) > 卤代烃(1%),其中甲醛、乙烯和乙醛是OFP主要贡献者。SOA生成潜势为1.64 μg/m3,芳香烃是最重要的SOA前体物。SOA生成潜势最大的5种VOCs物种为甲苯、对/间二甲苯、乙苯、邻二甲苯和苯,因此控制来自机动车尾气和溶剂使用过程中产生的VOCs可有效降低SOA的生成。通过甲苯与苯体积分数比分析发现,杭州市城区芳香烃除了来自机动车尾气以外,在春、夏季和秋、冬季还分别受到生物质燃烧和涂料溶剂的影响;分析了乙烷与乙炔体积分数比、乙炔与CO体积分数比,发现杭州市气团的老化程度呈现整体较高的特点。  相似文献   

2.
利用南京市2022年挥发性有机物(VOCs)在线监测数据,对VOCs污染特征、来源及对臭氧的影响进行了分析研究。结果表明:2022年南京市φ(TVOCs)年均值为25.1×10-9,其中各组分占比为烷烃>含氧挥发性有机物(OVOCs)>氯代烃>烯烃>芳香烃>炔烃。TVOCs及烷烃、烯烃和芳香烃的体积分数季节变化表现为冬季>秋季>春季>夏季,φ(OVOCs)季节变化表现为夏季>秋季>春季>冬季。烷烃、烯烃和炔烃日变化呈“双峰型”特征,芳香烃和氯代烃为“单峰型”。臭氧生成潜势(OFP)贡献总体表现为OVOCs>烯烃>芳香烃>烷烃>氯代烃>炔烃,但冬季烯烃的贡献率最高。南京市臭氧生成的关键VOCs物种为乙醛、乙烯、丙烯、间/对-二甲苯和甲苯。正交矩阵因子分解结果显示,机动车尾气、生物质燃烧和工业生产是南京VOCs的主要来源;对南京臭氧生成贡献最大的VOCs来源为溶剂涂料使用和石化行业。  相似文献   

3.
为探究威海市秋季挥发性有机物(VOCs)污染特征及来源,于2021年9月10—20日采用手工加密监测法对威海市秋季大气中VOCs进行监测,分析了气象因素对臭氧(O3)及其前体物的影响和VOCs污染特征,并利用正交矩阵因子模型(PMF)方法对VOCs来源进行了研究。结果表明,威海市温度对O3生成影响明显,尤其是高温、低湿、扩散较差气象条件下,有利于O3前体物的反应消耗,促使O3生成及累积。观测期间,威海市秋季φ(VOCs)平均值为47.84×10-9,VOCs中体积分数占比最高的为含氧挥发性有机物(OVOCs),占比为58.0%,其次为烷烃(21.6%)、卤代烃(10.2%)。O3生成潜势(OFP)平均值为393.95μg/m3,对OFP的贡献占比最高的为OVOCs(74.1%),其次为芳香烃(12.6%)、烷烃(7.0%)和烯烃(5.4%)。PMF源解析结果显示,机动车尾气排放源、工艺过程源、船舶尾气排放源和溶剂使用源是威海市秋季VOCs排放主要来源,贡献占比分别为30.4%,23.9%,21.1%,16.5%。控制机动车排放和工艺过程排放是控制威海市秋季VOCs污染的重要途径。  相似文献   

4.
于2021年夏、秋季利用单光子电离飞行时间质谱仪(SPI-MS)在珠海市金湾环境空气自动站(以下简称“金湾站”)周边开展挥发性有机物(VOCs)走航观测。结果表明,金湾站周边大气中总VOCs(以TVOC表示)质量浓度为11.7~203μg/m3(5%~95%分位值浓度),平均值为104μg/m3。烷烃在VOCs组成中占比最高(39.7%),其次为芳香烃(30%)和含氧含氮烃(13.9%)。2021年秋季(9—11月)为ρ(TVOC)的主要高值时段,且在10—11月,芳香烃和含氧含氮烃对TVOC的贡献显著升高。臭氧(O3)生成贡献分析结果表明,烷烃和芳香烃对O3生成的贡献最高,二甲苯、乙苯、三甲苯、甲苯、戊烷/异戊烷是珠海市O3污染防治的优控VOCs物种,其对O3生成的贡献高达56.0%。其中,戊烷/异戊烷主要来自金湾站周边的电子专用材料制造企业,二甲苯/乙苯主要来自周边的电线、电缆制造,橡胶、塑料制品生产企业。  相似文献   

5.
选择某喷涂企业附近环境空气为采样点位,在3个监测时段(5、9、11月)基于成分监测车在线监测107种挥发性有机物(VOCs),分析环境空气中VOCs污染特征和成分,结合走航监测车进行溯源分析,利用MCM模式结合敏感性实验研究了臭氧生成机制。结果表明:5月A时段的VOCs总浓度(247.43 μg/m3)高于其他2个监测时段(134.29、107.07 μg/m3),体现了VOCs季节性的变化趋势;3个监测时段VOCs浓度均以含氧有机物为主,其占比分别为44.36%、55.30%和37.90%,其次为芳香烃和烷烃,但不同监测时段同类VOCs占比各不相同,体现了不同季节VOCs浓度的差异性。3个监测时段均排在浓度排名前10位的物种有6种,分别为乙醇、丙酮、对/间二甲苯、苯、二氯甲烷和甲苯,说明该监测点位存在稳定污染排放源。走航溯源监测获得空气点位及附近喷涂企业内VOCs浓度和成分特征,结果显示环境大气中的VOCs主要组分来自喷涂企业厂区使用的挥发性溶剂的排放和油性漆的挥发排放。研究臭氧生成潜势(OFP)可知,芳香烃的OFP值在3个监测时段占比最高,对臭氧生成贡献较高的物种主要有对/间二甲苯、甲苯等芳香烃,乙醇和甲基丙烯酸甲酯等含氧有机物,异戊二烯和丙烯等烯烃类物种。MCM模式结果显示:5月A时段监测期间的臭氧光化学生成速率大于9月B时段和11月C时段,O3生成过程主要受甲基过氧自由基(CH3O2)+NO 和过氧化羟基自由基(HO2)+NO 控制。相对增量反应敏感性实验结果显示:3个监测时段臭氧生成均处于VOCs控制区,5月A时段,控制异戊二烯、芳香烃类物种可以大幅减少臭氧的生成,9月B时段需主要控制芳香烃和含氧有机物的排放,11月C时段则需控制芳香烃物种的排放。就VOCs单体而言,3个监测时段减少对/间二甲苯的浓度,对臭氧生成影响较大。走航溯源耦合在线监测方法可以实现臭氧污染快速原位溯源。  相似文献   

6.
基于2016—2022年南京市大气挥发性有机物(VOCs)自动监测数据,分析VOCs污染特征及其臭氧生成潜势(OFP)。结果表明:2016—2022年南京市大气VOCs及其组分体积分数均显著下降,TVOCs 7年均值为21.7×10-9,各组分占比从大到小依次为烷烃>烯烃>芳香烃>炔烃;TVOCs及烷烃、烯烃、芳香烃季节变化一致,均为冬季>秋季>春季>夏季,炔烃为冬季>春季>秋季>夏季;TVOCs及烷烃、烯烃、炔烃月变化整体呈“V”字型特征,芳香烃近似为“W”型;除炔烃外,小时体积分数日变化基本呈“单峰型”特征。2016—2022年OFP年际变化呈显著下降趋势,7年均值为132.1 μg/m3;OFP贡献较大的组分为烯烃(39.1%)和芳香烃(38.1%),臭氧生成的VOCs关键物种为乙烯、间/对二甲苯、甲苯、丙烯和异戊二烯,控制烯烃和芳香烃排放有利于南京市的臭氧污染防治。  相似文献   

7.
利用2020年3月28日—5月3日南京某典型化工园区挥发性有机物(VOCs)离线监测数据,分析了园区内VOCs污染特征及臭氧生成潜势(OFP)。结果表明,春季园区φ(VOCs)范围为22.3×10-9 ~892.6×10-9,82.1%频率的φ(VOCs)<100×10-9;VOCs组分占比表现为:烷烃>含氧挥发性有机物(OVOCs)>烯烃>卤代烃>芳香烃>炔烃>有机硫。高体积分数VOCs中烷烃和烯烃占比高于低体积分数VOCs,受园区内部储罐存储、运输、转运等过程产生的油气挥发及石油化工原料、合成材料的生产影响显著。不同时刻φ(VOCs)表现为夜间最高、早晨其次、下午最低的变化特征,这与园区内部VOCs排放累积、大气边界层抬升和大气光化学反应等因素有关。OFP值范围为166.2~6 920.9 ,μg/m3,56.0%频率的OFP<500。  相似文献   

8.
对2020年4月—2021年3月北京市建成区挥发性有机物(VOCs)的化学特征、污染来源及其对臭氧(O3)污染的影响进行了研究。结果显示:O3日最大8 h滑动平均值在臭氧季(4—9月)均值为134 μg/m3,是非臭氧季(10月至次年3月)均值(59.6 μg/m3)的2.2倍。臭氧季VOCs体积浓度均值为14.3×10-9,明显低于非臭氧季(21.1×10-9),可能与光化学反应速率和VOCs来源的季节性差异有关。臭氧生成潜势(OFP)贡献率排名前10位的物种在臭氧季和非臭氧季相似,均包括间/对-二甲苯、甲苯、乙烯、邻二甲苯、异戊烷、正丁烷、丙烯、反式-2-丁烯和1,2,4-三甲基苯,但排名有所差异,燃煤源特征明显的乙烯等物种在非臭氧季上升明显,与溶剂使用、油气挥发相关的间/对二甲苯、甲苯、异戊烷和正丁烷等物种在臭氧季上升明显。甲苯/苯的值和异戊烷/正戊烷的值在臭氧季明显高于非臭氧季,反映出机动车排放和油气挥发等在臭氧季影响突出,非臭氧季是燃煤影响显著。基于正交矩阵因子分解模型(PMF),臭氧季解析出机动车尾气排放(40.9%)、溶剂使用(20%)、油气挥发(16.4%)、工业排放(17.6%)和植物排放(5.1%)等5种污染源;非臭氧季解析出机动车尾气(38.9%)、燃烧源(26.3%)、工业排放(17.8%)和溶剂使用(17%)等4种污染源。  相似文献   

9.
在石家庄臭氧(O3)污染较重的7月,开展连续10 d(2018年7月6—15日),8次/d的加密监测,获得大气挥发性有机物(VOCs)苏玛罐样品数据及O3在线监测数据,分析了采样期间O3污染特征、VOCs组成及O3生成潜势(OFP)特征,并对VOCs来源进行了研究。结果表明,采样期间O3-3 h浓度最高为243 μg/m3,与相对湿度存在明显的反相关关系,与温度和风速存在良好的正相关关系。VOCs平均体积分数为(75.28±5.81)×10-9,各组分浓度所占比例为OVOCs>烷烃>卤代烃>烯炔烃>芳香烃>其他组分。各类VOCs中,OVOCs对OFP的贡献最大,占64.12%。作为光化学反应的中间产物,OVOCs的一次来源较少,表明二次污染物对石家庄大气O3生成有重要贡献。从具体组分来看,OFP值排名前十的组分以OVOCs为主,其中最高的为甲基丙烯酸甲酯。采样期间,VOCs一次来源主要为汽油车和柴油车尾气排放,贡献率分别为38%与32%;溶剂使用、汽油挥发、生物排放分别占13%、11%、6%。VOCs主要受本地排放影响。  相似文献   

10.
2020年4—9月通过离线采样研究了盐城市城区大气中的挥发性有机物(VOCs)浓度水平及组成特征、臭氧生成潜势、二次有机气溶胶生成潜势以及毒性效应等多效应评估和来源贡献。结果表明:盐城市城区VOCs平均体积浓度为35.09×10-9,盐塘湖公园站点浓度最高;盐城市VOCs主要组分为含氧有机物(OVOCs)和烷烃。通过挥发性有机物多效应评估发现,关键物种为乙醛、对二乙苯、丙酮、甲苯和间/对二甲苯等。采样期间对VOCs浓度的主要贡献来源为二次生成、工业排放和交通排放。  相似文献   

11.
利用手工及自动监测数据,结合最大增量反应活性(MIR)系数法,对广州市大气挥发性有机物(VOCs)污染特征及臭氧生成潜势(OFP)进行了研究。结果表明:广州市大气VOCs总体积分数为73.85×10-9,其中,丙烷、甲醛、乙酸乙酯的体积分数最高,分别为5.59×10-9、4.87×10-9、4.25×10-9。组成特征分析结果显示,含氧挥发性有机物(OVOCs)和烷烃为主要污染物种类,分别贡献了总VOCs的34.32%和32.34%。在空间分布上,各站点VOCs体积分数自南向北不断降低,番禺市桥站(南部,76.16×10-9)>公园前站(中部,75.58×10-9)>花都梯面站(北部,69.80×10-9)。广州市大气中甲醛和乙醛的比值为1.22,表明本地排放对广州市醛酮类化合物的贡献较大;乙苯和间/对-二甲苯的比值为0.35,表明广州市气团老化程度低,VOCs主要受本地排放影响;甲苯和苯的比值显示,公园前站苯系物主要受机...  相似文献   

12.
选取武夷山、庞泉沟和长岛3个具有代表性的空气背景站点及其周边城市站点,分析研究夏季环境空气中挥发性有机污染物(VOCs)的特征。结果表明,庞泉沟、武夷山、长岛背景站点的总挥发性有机物(TVOCs)平均浓度分别为(24.71±7.89)×10-9、(7.94±5.82)×10-9、(11.98±5.34)×10-9,分别比对应的城市站点低42%、43%、11%。背景站点TVOCs中的烷烃占比为67%~72%,明显高于城市站点;背景站点与城市站点TVOCs中的烯烃和芳香烃占比无显著差异;但背景站点炔烃占比(2%~3%)明显低于城市地区(10%~24%)。背景站点异戊二烯浓度在09:00—15:00出现峰值,且TVOCs浓度变化趋势与异戊二烯浓度变化趋势关联性较强,说明背景站点受自然源影响较大。臭氧生成潜势(OFP)分析结果表明,烯烃及芳香烃对背景地区与城市地区臭氧生成有较大影响,城市地区总OFP远大于背景地区,乙烯、甲苯等对城市地区OFP的贡献较大,异戊二烯对背景地区OFP的贡献较大。  相似文献   

13.
典型化工园区大气中挥发性有机物污染调查   总被引:1,自引:0,他引:1       下载免费PDF全文
对常州市某典型化工园区大气中挥发性有机物(VOCs)污染状况进行了调查。结果表明,该化工园区大气中检出挥发性有机物共有58种,组分有芳香烃、饱和烷烃、卤代烃、烯烃、醛酯类化合物及其他类;苯、甲苯、乙苯、二甲苯为主要挥发性有机污染物,质量浓度为1.0~194μg/m~3;均未超出参考标准的限值。背景点位和园区点位大气中主要ρ总(VOCs)在秋冬季最高,敏感点大气VOCs随季节变化也较为明显;园区T1和T2ρ总(VOCs)年均值高于敏感点位,背景点位年均值最低;园区点位除了汽车尾气排放之外,溶剂的挥发和生产工艺中污染物的排放也增加了大气中苯系物的浓度,同时也对敏感点位和对照点位的大气质量产生了一定的影响。  相似文献   

14.
2017年9月1日至11月30日采用Syntech Spectras GC955在线气相色谱仪对杭州市不同功能区大气环境中的挥发性有机化合物(VOCs)进行了在线连续监测,分析了不同功能区VOCs及各组分的体积分数、日变化规律及大气化学反应活性。结果显示,下沙周边工业区总VOCs浓度整体高于朝晖周边居民区,其中夜间更为显著。烷烃和芳香烃浓度在夜间时段工业区较居民区高得更为明显,其中芳香烃组分表现尤为突出,2个功能区烯烃体积分数相差不大。杭州市主要VOCs体积分数总体上在国内处于中间水平。不同功能区烷烃和芳香烃均呈现夜间浓度高于白天的日变化特征,居民区各VOCs组分日变化基本呈现双峰结构,工业区烷烃和芳香烃体积分数日变化呈现单峰结构,烯烃体积分数没有明显的日变化特征。不同功能区中芳香烃对臭氧生成潜势贡献最大,烯烃次之,烷烃贡献最小。下沙周边工业区大气化学活性(尤其是芳香烃组分)较朝晖周边居民区强。同种VOCs物质在不同功能区对臭氧生成潜势的贡献大小不同,但关键贡献物质均为低碳烷烃、低碳烯烃及苯系物。  相似文献   

15.
利用无人机对某石化工业园区地面至100 m大气中的VOCs进行监测,通过不同高度数据对比,总结该石化工业园区挥发性有机物的垂直分布特征,并分析其化学反应活性。监测结果表明,VOCs体积分数和总臭氧生成潜势随高度增加均呈下降趋势,地面和15~30 m高度的VOCs浓度及臭氧生成潜势基本一致。主要VOCs物种浓度垂直分布特征可分为均匀分布、随高度增加浓度不断降低、随高度增加浓度先升后降3种。含氧有机物和烷烃在大气中体积分数较大,主要特征挥发性有机物为丙酮、乙醛、乙烷、乙醇等;臭氧生成潜势贡献较大的组分为含氧有机物、烯烃和炔烃,关键活性物质为甲醛、乙醛、丁烯醛、正丁醛等。含氧有机物的体积分数和臭氧生成潜势贡献在地面至100 m高度都明显高于其他组分,应作为VOCs浓度和化学活性控制的重点。  相似文献   

16.
The presence of volatile organic compounds (VOCs) from traffic and other sources in urban areas is a cause for concern about public health. Canister, chemical derivatisation, particulate sampling and adsorption sampling techniques were used to measure VOC concentrations of a wide range of compounds (C6-C40) during a four day campaign in south London with subsequent laboratory analysis of the samples. Compounds quantified included alkanes, mono- and poly-nuclear aromatic hydrocarbons. Also the first sequential measurements of carbonyl compounds (C1-C8) in a UK urban area are presented. Results from canister and adsorption sampling methods are compared. A comparison of the results with other urban data is presented and the temporal variations in VOC concentrations were interpreted with reference to the prevalent wind speeds and directions. The CALINE4 line source dispersion model was generally successful in reproducing the daytime 12 hour average concentrations of selected VOCs.  相似文献   

17.
SUMMA罐采样-GC/MS法测定吸烟室内空气中挥发性有机物   总被引:1,自引:0,他引:1  
采用空气预浓缩与气相色谱/质谱联用技术对空气中59种痕量挥发性有机化合物进行定性与定量分析,应用研究的技术对吸烟室烟草空气中的挥发性有机物成分定性解析,对59种常见挥发性有机污染物定量检测.室内环境烟草空气中检出多种挥发性有机污染物,主要有烯烃、烷烃、苯系物等有害成分,不仅对被动吸烟人群造成危害,同时也影响大气环境质量...  相似文献   

18.
2019年8—9月,在常州市洛阳小学、市监测站和武澄工业园3个监测站点开展了为期49 d的环境空气57种挥发性有机物(VOCs)离线加密监测,分析其浓度水平及组成特征。结果表明,3个站点VOCs的体积分数分别为29.8×10-9,20.8×10-9和25.3×10-9。3个站点中烷烃的值均值最大,其值占比依次为59.1%,57.2%和51.4%,烷烃中均以乙烷、丙烷和正丁烷值最大。应用臭氧生成潜势(OFP)、OH自由基消耗速率和二次有机气溶胶生成潜势(SOAP)分别对3个站点进行计算,结果显示,各站点芳香烃的数值均最大,OFP占比为67.1%~68.0%,OH自由基消耗速率占比为45.4%~52.0%,SOAP占比为93.3%~94.7%,芳香烃中关键活性组分是甲苯、乙苯和二甲苯等。上风向的洛阳小学与武澄工业园VOCs浓度比市区的市监测站更高,OFP和SOAP也均高于市监测站,表明上风方向的VOCs排放对市区影响较大。  相似文献   

19.
嘉善夏季典型时段大气VOCs的臭氧生成潜势及来源解析   总被引:2,自引:0,他引:2  
2016年8—9月对长三角南部区域嘉善的大气中挥发性有机化合物(VOCs)变化特征、臭氧生成潜势、臭氧生成控制敏感性和来源进行了研究。结果表明,观测期间VOCs总平均值为27.3×10-9,表现为烷烃卤代烃含氧有机物芳香烃烯烃炔烃;VOCs浓度变化较大,早晚出现峰值,与风速呈负相关的关系,与温度没有明显相关性。VOCs的臭氧生成潜势表现为芳香烃烯烃烷烃含氧有机物卤代烃炔烃。甲苯等10种物质对臭氧生成潜势的贡献达到63%。夏季典型时段臭氧生成对VOCs较敏感,属于VOCs控制区。观测期间测得对VOCs浓度贡献较大的物种来源于溶剂涂料和工业排放。  相似文献   

20.
The compositions, spatial distributions, seasonal variations and ozone formation potential (OFP) of volatile organic compounds (VOCs) were investigated in the atmosphere of Haicang District, Xiamen City, Southeast China. Twenty-four types of VOCs were measured in this study, and ethanol, methylene chloride, toluene, ethyl acetate and isopropyl alcohol were the abundant species based on concentration rank. The concentrations of total VOCs (TVOCs) in industrial areas were higher than those in residential and administrative areas and background site. For industrial areas, the TVOCs concentrations in summer were higher than those in winter, which might result from higher emissions from industrial activities because of stronger evaporation in summer. In contrast, non-industrial areas showed higher concentrations in winter due to the unfavorable meteorological conditions. The spatial distribution of BTEX (benzene, toluene, ethylbenzene and xylene) followed the order of industrial areas > residential and administrative areas > background site, and the concentrations in summer were lower than those in winter for most sites. The high ratios (8.9-14.0) of T/B in this study indicated that industrial emissions were the main sources in this district. X/B ratios were used to assess the ages of air parcels and provided evidence of the transport of air parcels among these sites. Total OFP (TOFP) showed the trend of increase with the increase of TVOCs, and toluene was found as the major contributor to TOFP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号