首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 313 毫秒
1.
The Yellow River is the second longest river in China and the cradle of the Chinese civilization. The source region of the Yellow River is the most important water holding area for the Yellow River, about 49.2% of the whole runoff comes from this region. However, for the special location, it is a region with most fragile eco-environment in China as well. Eco-environmental degradation in the source region of the Yellow River has been a very serious ecological and socially economic problem. According to census data, historical documents and climatic information, during the last half century, especially the last 30 years, great changes have taken place in the eco-environment of this region. Such changes are mainly manifested in the temporal-spatial changes of water environment, deglaciation, permafrost reduction, vegetation degeneracy and desertification extent, which led to land capacity decreasing and river disconnecting. At present, desertification of the region is showing an accelerating tendency. This paper analyzes the present status of eco-environment degradation in this region supported by GIS and RS, as well as field investigation and indoor analysis, based on knowledge, multi-source data is gathered and the classification is worked out, deals with their natural and anthropogenic causes, and points out that in the last half century the desertification and environmental degradation of this region are mainly attributed to human activities under the background of regional climate changes. To halt further degradation of the environment of this region, great efforts should be made to use land resources rationally, develop advantages animal agriculture and protect the natural grassland.  相似文献   

2.
Aeolian desertification is one of the most serious environmental and socioeconomic problems in arid, semi-arid, and dry subhumid zones. Understanding desertification processes and causes is important to provide reasonable and effective control measures for preventing desertification. With satellite remote sensing images as data source to assess the temporal and spatial dynamics of desertification from 1975 to 2010 in the Horqin Sandy Land, dynamic changes of aeolian desertification were detected using the human–machine interactive interpretation method. The driving factors of local desertification were analyzed based on natural and socioeconomic data. The results show that aeolian desertified land in the study area covered 30,199 km2 in 2010, accounting for 24.1 % of the study area. The total area of aeolian desertified land obviously expanded from 30,884 km2 in 1975 to 32,071 km2 in 1990, and gradually decreased to 30,199 km2 in 2010; aeolian desertified land represented an increasing trend firstly and then decreased. During the past 35 years, the gravity centers of desertified lands that are classified as extremely severe and severe generally migrated to the northeast, whereas those that are moderate and slight migrated to the northwest. The migration distance of severely desertified land was the largest, which indicated the southern desertified lands were improved during the last few decades. In addition, the climatic variation in the past 35 years has been favorable to desertification in the Horqin Sandy Land. Aeolian desertified land rapidly expanded from 1975 to 1990 under the combined effects of climate changes and unreasonable human activities. After the 1990s, the main driving factors responsible for the decrease in desertification were positive human activities, such as the series of antidesertification and ecological restoration projects.  相似文献   

3.
The effect of land cover change, from natural to anthropogenic, on physical geography conditions has been studied in Kayisdagi Mountain. Land degradation is the most important environmental issue involved in this study. Most forms of land degradation are natural processes accelerated by human activity. Land degradation is a human induced or natural process that negatively affects the ability of land to function effectively within an ecosystem. Environmental degradation from human pressure and land use has become a major problem in the study area because of high population growth, urbanization rate, and the associated rapid depletion of natural resources. When studying the cost of land degradation, it is not possible to ignore the role of urbanization. In particular, a major cause of deforestation is conversion to urban land. The paper reviews the principles of current remote sensing techniques considered particularly suitable for monitoring Kayisdagi Mountain and its surrounding land cover changes and their effects on physical geography conditions. In addition, this paper addresses the problem of how spatially explicit information about degradation processes in the study area rangelands can be derived from different time series of satellite data. The monitoring approach comprises the time period between 1990 and 2005. Satellite remote sensing techniques have proven to be cost effective in widespread land cover changes. Physical geography and particularly natural geomorphologic processes like erosion, mass movement, physical weathering, and chemical weathering features etc. have faced significant unnatural variation.  相似文献   

4.
以1989—2016年玛纳斯河流域TM/OLI遥感影像为数据源,利用混合像元分解技术,计算玛纳斯河流域草地总覆盖度和裸沙面积。在此基础上通过监测年与基期年的比较,计算草地覆盖度相对基期年的减少率和裸沙面积相对基期年的增加率两个监测指标,依据《天然草地退化、沙化、盐渍化的分级指标》(GB 19377—2003),对计算出的两个指标分别进行沙化等级评定和赋值,将两种评定结果相综合来监测草地沙化。结果表明,玛纳斯河流域近30年来荒漠草地沙漠化总体呈现先增加后降低的趋势。分析表明,玛纳斯河流域草地沙化是人为和自然因素双重作用的结果。  相似文献   

5.
The objective of this study is to develop techniques for assessing and analysing land desertification in Yulin of Northwest China, as a typical monitoring region through the use of remotely sensed data and geographic information systems (GIS). The methodology included the use of Landsat TM data from 1987, 1996 and 2006, supplemented by aerial photos in 1960, topographic maps, field work and use of other existing data. From this, land cover, the Normalised Difference Vegetation Index (NDVI), farmland, woodland and grassland maps at 1:100,000 were prepared for land desertification monitoring in the area. In the study, all data was entered into a GIS using ILWIS software to perform land desertification monitoring. The results indicate that land desertification in the area has been developing rapidly during the past 40 years. Although land desertification has to some extent been controlled in the area by planting grasses and trees, the issue of land desertification is still serious. The study also demonstrates an example of why the integration of remote sensing with GIS is critical for the monitoring of environmental changes in arid and semi-arid regions, e.g. in land desertification monitoring in the Yulin pilot area. However, land desertification monitoring using remote sensing and GIS still needs to be continued and also refined for the purpose of long-term monitoring and the management of fragile ecosystems in the area.  相似文献   

6.
This paper investigates the sandy desertification change between 1986 and 2000 in the western Jilin province, North China. Land use and land cover data were obtained from Landsat TM data by using a supervised classification approach. We summarized the total area of desertified land by each county, as well as the area for each of the four categories of desertified land. The changes of different types of land use and land cover between 1986 and 2000 were calculated and analyzed. Taking Tongyu and Qianan as examples, both human and natural driving forces of the sandy desertification were analyzed. Our analyses indicate that the material sources and windy, warm and dry climate are the immanent causes of potential land desertification, while the irrational human activities, such as deforestation, reclaiming and grazing in the grassland, are the external causes of potential land desertification. However, rational human activities, such as planting trees and restoring grassland can reverse the land desertification process. Furthermore, the countermeasures and suggestions for the sustainable development in ecotone between agriculture and animal husbandry in North China are put forward.  相似文献   

7.
Overuse of land resources has increasingly contributed to environmental crises in China. To mitigate widespread land degradation, actions have been taken to maintain and restore the ecological environment through efforts such as ecological engineering. By analyzing trends in land use, the impact and effectiveness of ecological engineering can be determined. In this study, such changes in Huanjiang County in China were considered. In the early 1990s, an eco-immigration policy and “returning farmland to forest program” were implemented in the county, drastically impacting land use. Land use/land cover changes were detected and analyzed using remote sensing data recorded over 4 years (1995, 2000, 2005, and 2010). Land transfer flow and the rate of land use change elucidated the extent of changes, while nuclear density analysis indicated spatial agglomeration. The results indicate that, over a period of 15 years, farmland area increased, while forest area decreased initially before subsequently increasing. From 1995 to 2000, the highest transfer flow was observed in the grassland to farmland conversion (79.34%). From 2000 to 2005, the transfer flow of conversions was the highest for forest to farmland (56.79%). Land use changes were not prominent from 2005 to 2010. Direct drivers of land use change exert obvious impacts on land use, and indirect drivers impact direct drivers that are then channeled through direct anthropogenic drivers (e.g., land use policies). We found that ecological engineering has a very significant impact on land use change, and that impact varies from region to region.  相似文献   

8.
Based on land ecological classification of the source regions of the Yangtze and Yellow Rivers and field investigation, two phases of TM remote sensing data obtained in 1986 and 2000 were compared. From spatial variations and type transformation trends, the spatial changes and evolutional patterns of land ecosystem in the source regions of the two rivers were analyzed using the analytical method of landscape ecological spatial patterns. Results show that middle and high-cover high-cold steppe areas degraded considerably by 15.82%, high-cover high-cold meadow areas by 5.15%, while high-cold swamp meadow areas decreased by 24.36%. Lake water area was reduced by 7.5%, especially the lakes in the source region of the Yangtze River. Land desertification is developing rapidly and the average of desertified land area has increased by 17.11%. Desertified land in the source region of Yellow River is expanding at an annual rate of 1.83%. Analysis of the evolutional pattern of land ecotypes shows that the general tendencies of spatial evolution in the regions are coverage reduction and desertification of high-cold steppe, cover reduction and steppification of high-cold meadows, and desiccation of swamp meadows. As a result, land ecological spatial distribution pattern in the region is changing and the state of eco-environment declining.  相似文献   

9.
The desertification risk affects around 40% of the agricultural land in various regions of Romania. The purpose of this study is to analyse the risk of desertification in the south-west of Romania in the period 19842011 using the change vector analysis (CVA) technique and Landsat thematic mapper (TM) satellite images. CVA was applied to combinations of normalised difference vegetation index (NDVI)-albedo, NDVI-bare soil index (BI) and tasselled cap greenness (TCG)-tasselled cap brightness (TCB). The combination NDVI-albedo proved to be the best in assessing the desertification risk, with an overall accuracy of 87.67%, identifying a desertification risk on 25.16% of the studied period. The classification of the maps was performed for the following classes: desertification risk, re-growing and persistence. Four degrees of desertification risk and re-growing were used: low, medium, high and extreme. Using the combination NDVI-albedo, 0.53% of the analysed surface was assessed as having an extreme degree of desertification risk, 3.93% a high degree, 8.72% a medium degree and 11.98% a low degree. The driving forces behind the risk of desertification are both anthropogenic and climatic causes. The anthropogenic causes include the destruction of the irrigation system, deforestation, the destruction of the forest shelterbelts, the fragmentation of agricultural land and its inefficient management. Climatic causes refer to increase of temperatures, frequent and prolonged droughts and decline of the amount of precipitation.  相似文献   

10.
为建立土壤侵蚀动态变化数据库,本文以土地利用数据、植被覆盖指数、最大风速等值线图和DEM数据为信息源,对干旱荒漠区新疆克拉玛依市2000年和2007年的土壤侵蚀状况进行了动态监测与评价。结果表明,受自然条件和人类活动影响,8年间克拉玛依市土壤侵蚀强度有所增加,变化区域主要集中在克拉玛依市中部平原区。该方法的应用实现了土壤侵蚀的定时定量评价。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号