首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
降水背景值与酸雨定义研究   总被引:18,自引:0,他引:18  
选择太平洋、印度洋、大西洋、北冰洋、内陆丽江玉龙雪山山麓背景降水H+、Ca2+、Mg2+、SO2-4、NO-3等降水化学组分的背景统计值,研究组分与H+的相关性,从而提出定义海洋降水pH48、内陆50为酸雨,以及背景值是一个区间值的理论依据  相似文献   

2.
几种烟气脱硫剂的脱硫性能试验   总被引:3,自引:0,他引:3  
用添加Ca(OH)2的碱性水,含炉灰渣、赤泥的碱性工业废水及含有Fe2+、Mn2+催化剂的水溶液作为吸收液;以冷态模拟脱硫洗涤塔为吸收设备,研究了多种脱硫剂的脱硫效果。结果显示,Ca(OH)2、Fe2+、Mn2+催化剂对浓度为1000~2000ppm的SO2气体有较高脱硫效率;炉灰水、赤泥水对浓度为1000ppm左右的SO2气体有明显的脱硫效果  相似文献   

3.
COD废液中银的回收   总被引:1,自引:0,他引:1  
COD废液中银的回收周洪春李家兴(辽宁营口市环境监测站,营口115003)①COD废液样加入5%HCl20~25ml,生成AgCl并用少量5%HCl冲洗残余Hg2+、Cr3+、Fe2+等杂质。②沉淀的AgCl中加入10%Na2S溶液100ml(分三次...  相似文献   

4.
采用增压溶样器加7:3:5的HNO3-H2SO4-HClO4混合酸处理煤样.用冷原子荧光法测定煤样中的总汞含量。该法的加标回收率为92.7~112.5%,结果令人满意。  相似文献   

5.
单柱离子色谱法同时测定地面水中阴离子   总被引:4,自引:0,他引:4  
单柱离子色谱法同时测定地面水中F-、Cl-、NO-2-N、NO-3-N、SO2-4阴离子。以2.5mM苯二甲酸、2.4mM三羟甲胺缓冲液为淋洗液,在pH=4.0,流速为1.5ml/min的条件下,测得各阴离子检出限、线性回归方程及相关系数、方法的精密度和准确度。  相似文献   

6.
发生氢气分离离子色谱法间接测定水中硫化物   总被引:1,自引:0,他引:1  
利用KBH4在酸性条件下分解产生的氢气为载气分离水中硫化物,用NaOH—H2O2溶液吸收H2S,并将其氧化为SO2-4,用离子色谱法测定SO2-4。方法用于各种水样中硫化物的测定,相对标准偏差为1.58%,回收率在90.5%到98.2%之间。方法适用于水中硫化物的测定  相似文献   

7.
高压蒸汽消化法测定废水化学需氧量的再研究   总被引:2,自引:0,他引:2  
用"自控式高压蒸汽消解器"作为高压蒸汽消化法测定废水化学需氧量的消化装置,详细研究了消化条件,最后确定,消化体系中(1/6)K2Cr2O7浓度为01mol/L,H2SO4浓度为10.1mol/L,催化剂Ag+浓度为0.03mol/L,消化温度为130℃,恒温时间为20min。用此方法和条件测定了12种单纯有机化合物和16种不同工业废水的化学需氧量,与标准回流法相比,相对误差在-5.5-6.0%之间。  相似文献   

8.
填充柱气相色谱法测定废水中的乙酸根   总被引:2,自引:0,他引:2  
废水经蒸馏预处理,采用5%PEG20M+05%H3PO4ChromosorbHP80~100目,2m×2mm玻璃填充柱,直接进预处理水样气相色谱法测定废水中的乙酸根,方法操作快速、简便,变异系数为4%和10%,加标回收率83%~105%,最小检出浓度为2mg/L  相似文献   

9.
氨氮测定中水样混凝沉淀预处理的改进陈淑贞(福建连江县环境监测站,连江350500)改取100ml水样于100ml比色管,加10%ZnSO4溶液1ml混匀后加24%NaOH溶液0.2ml,使pH为10.5,这时浓度>10mg/LCa-CO3的水样可自然...  相似文献   

10.
本文介绍了用甲醛-硼氢化钠系统衍生水小二乙烯三肢的衍生化气相色谱测定方法。测定条件:TSD检测器,260℃;色谱柱:PT28%AT223+4%KOH涂在GasChromR80~100目。1.4m×3mm。线性范围:2.5~20mg/L。回收率:92~107%。相对标准偏差;9%。  相似文献   

11.
结合粉煤灰堆放场的水文地质状况,通过稳定同位素示踪、浸溶和淋溶试验,探讨了灰场对周围岩溶地下水的影响。结果表明,堆场灰水已经达到下游部分水井,堆场在大气降水和冲灰水的浸泡、淋溶作用下,其中的Cr6+、F-和钙镁盐类大量析出并随灰水一起下渗,石灰岩碎石虽对氟化物有一定的吸附作用,但能力有限。根据试验数据分析认为,该粉煤灰堆放场是焦作市北中部岩溶地下水Cr6+、F-和总硬度升高的主要原因。  相似文献   

12.
Groundwater from 33 monitoring of peripheral wells of Karachi, Pakistan were evaluated in terms of pre- and post-monsoon seasons to find out the impact of storm water infiltration, as storm water infiltration by retention basin receives urban runoff water from the nearby areas. This may increase the risk of groundwater contamination for heavy metals, where the soil is sandy and water table is shallow. Concentration of dissolved oxygen is significantly low in groundwater beneath detention basin during pre-monsoon season, which effected the concentration of zinc and iron. The models of trace metals shown in basin groundwater reflect the land use served by the basins, while it differed from background concentration as storm water releases high concentration of certain trace metals such as copper and cadmium. Recharge by storm water infiltration decreases the concentration and detection frequency of iron, lead, and zinc in background groundwater; however, the study does not point a considerable risk for groundwater contamination due to storm water infiltration.  相似文献   

13.
The development of groundwater resources for water supply is a favored way in Turkey. The Berdan alluvial aquifer in Mersin is particularly productive, but little is known about the natural phenomena that govern the groundwater quality and the contamination sources in this region. During 2001 and 2002, water samples for chemical analysis were obtained from 27 wells and from two points of Berdan River and analyzed by ICP. Main chemical characteristics of sampled groundwater define two aquifers, which were also determined by hydrogeological investigations. The groundwater produced from some of the wells was affected by anthropogenic activities temporally and spatially by seawater intrusion. Berdan River is polluted with the wastewater discharges and river water also influences the groundwater quality.  相似文献   

14.
Based on the data of the depths and the chemical properties of groundwater, salinity in the soil profile, and the basic information on each delivery of water collected from the years 2000 to 2006, the varied character of groundwater chemistry and related factors were studied. The results confirmed the three stages of the variations in groundwater chemistry influenced by the intermittent water deliveries. The factors that had close relations to the variations in groundwater chemistry were the distances of monitoring wells from the water channel, the depths of the groundwater, water flux in watercourse, and the salinities in soils. The relations between chemical variation and groundwater depths indicated that the water quality was the best with the groundwater varying from 5 to 6 m. In addition, the constructive species in the study area can survive well with the depth of groundwater varying from 5 to 6 m, so the rational depth of groundwater in the lower reaches of the Tarim River should be 5 m or so. The redistribution of salts in the soil profile and its relations to the chemical properties and depths of groundwater revealed the linear water delivery at present combining with surface water supply in proper sections would promote water quality optimized and speed up the pace of ecological restoration in the study area.  相似文献   

15.
张柏江 《干旱环境监测》1993,7(4):209-214,219
对奎屯市地表地下贮水系统(奎屯河、泉沟水库、市区地下水)所构成水环境的特征进行了较为深入的分析研究,得出了地下贮水系统受到一定程度破坏,水环境质量呈下降趋势等一系列的结论,并根据最新的水质评价资料以及秩相关系数法检验结果,预测了奎屯市水环境今后的变化趋势.  相似文献   

16.
A fuzzy logic approach has been developed to assess the groundwater pollution levels below agricultural fields. The data collected for Kumluca Plain of Turkey have been utilized to develop the approach. The plain is known with its intensive agricultural activities, which imply excessive application of fertilizers. The characteristics of the soils and underlying groundwater for this plain were monitored during the years 1999 and 2000. Additionally, an extensive field survey related to the types and yields of crops, fertilizer application and irrigation water was carried out. Both the soil and groundwater have exhibited high levels of nitrogen, phosphorus and salinity with considerable spatial and temporal variations. The pollution level of groundwater at several established stations within the plain were assessed using Fuzzy Logic. Water Pollution Index (WPI) values are calculated by Fuzzy Logic utilizing the most significant groundwater pollutants in the area namely nitrite, nitrate and orthophosphate together with the groundwater vulnerability to pollution. The results of the calculated WPI and the monitoring study have yielded good agreement. WPI indicated high to moderate water pollution levels at Kumluca plain depending on factors such as agricultural age, depth to groundwater, soil characteristics and vulnerability of groundwater to pollution. Fuzzy Logic approach has shown to be a practical, simple and useful tool to assess groundwater pollution levels.  相似文献   

17.
High-frequency, long-term monitoring of water quality has revolutionized the study of surface waters in recent years. However, application of these techniques to groundwater has been limited by the ability to remotely pump and analyze groundwater. This paper describes a novel autonomous groundwater quality monitoring system which samples multiple wells to evaluate temporal changes and identify trends in groundwater chemistry. The system, deployed near Fresno, California, USA, collects and transmits high-frequency data, including water temperature, specific conductance, pH, dissolved oxygen, and nitrate, from supply and monitoring wells, in real-time. The system consists of a water quality sonde and optical nitrate sensor, manifold, submersible three-phase pump, variable frequency drive, data collection platform, solar panels, and rechargeable battery bank. The manifold directs water from three wells to a single set of sensors, thereby reducing setup and operation costs associated with multi-sensor networks. Sampling multiple wells at high frequency for several years provided a means of monitoring the vertical distribution and transport of solutes in the aquifer. Initial results show short period variability of nitrate, specific conductivity, and dissolved oxygen in the shallow aquifer, while the deeper portion of the aquifer remains unchanged—observations that may be missed with traditional discrete sampling approaches. In this aquifer system, nitrate and specific conductance are increasing in the shallow aquifer, while invariant changes in deep groundwater chemistry likely reflect relatively slow groundwater flow. In contrast, systems with high groundwater velocity, such as karst aquifers, have been shown to exhibit higher-frequency groundwater chemistry changes. The stability of the deeper aquifer over the monitoring period was leveraged to develop estimates of measurement system uncertainty, which were typically lower than the manufacturer’s stated specifications, enabling the identification of subtle variability in water chemistry that may have otherwise been missed.  相似文献   

18.
再生水作为改善城市景观用水纳入河道,可其对地下水具有潜在的污染风险。通过构建区域地下水数值模型,应用质点追踪技术,计算出永定河补水区在河湖受水后地下水5 a运移1.47 km、20 a运移6.32 km,年均运移0.32 km。在数值模拟的基础上,依据地下水运移轨迹,结合区域水文地质条件,将研究区划分为核心监控区、二级监控区和控制监控区3个地下水监测分区,并提出各分区地下水监测井的布设原则及布设方式,实现地下水环境监测网络的优化。  相似文献   

19.
Radon measurements have been carried out in groundwater of Himachal Pradesh and Punjab states, India. Radon concentration values in potable water show a wide range of variation from source to source and from place to place. Generally, radon concentration values in thermal springs groundwater have been found to be higher than the values from other sources.  相似文献   

20.
Many developing and threshold countries rely on shallow groundwater wells for their water supply whilst pit latrines are used for sanitation. We employed a unified strategy involving satellite images and environmental monitoring of 16 physico-chemical and microbiological water quality parameters to identify significant land uses that can lead to unacceptable deterioration of source water, in a region with a subtropical climate and seasonally restricted torrential rainfall in Northern Argentina. Agricultural and non-agricultural sources of nitrate were illustrated in satellite images and used to assess the organic load discharged. The estimated human organic load per year was 28.5 BOD(5) tons and the N load was 7.5 tons, while for poultry farms it was 9940-BOD(5) tons and 1037-N tons, respectively. Concentrations of nitrates and organics were significantly different between seasons in well water (p values of 0.026 and 0.039, respectively). The onset of the wet season had an extraordinarily negative impact on well water due in part to the high permeability of soils made up of fine gravels and coarse sand. Discriminant analysis showed that land uses had a pronounced seasonal influence on nitrates and introduced additional microbial contamination, causing nitrification and denitrification in shallow groundwater. P-well was highly impacted by a poultry farm while S-well was affected by anthropogenic pollution and background load, as revealed by Principal Component Analysis. The application of microbial source tracking techniques is recommended to corroborate local sources of human versus animal origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号