首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Measurements of aerosols were made in 2001 and 2002 at Dunhuang (40 degrees 00'N, 94 degrees 30'E), China to understand the nature of atmospheric particles over the desert areas in the Asian continent. Balloon-borne measurements with an optical particle counter suggested that particle size and concentration had noticeable peaks in super micron size range not only in the boundary mixing layer but also in the free troposphere. Super-micron particle concentration largely decreased in the mid tropopause (from 5 to 10 km; above sea level, a.s.l.). Lidar measurements made during August 2002 at Dunhuang suggested the possibility that mixing of dust particles occurred from near the ground to about 6 km even under calm weather conditions, and a large depolarization ratio of particulate matter was found in the aerosol layer. The top of the aerosol layer was found at heights of nearly 6 km (a.s.l.). It is strongly suggested that nonspherical dust particles (Kosa particles) frequently diffused in the free atmosphere over the Taklamakan desert through small-scale turbulences and are possible sources of dust particles of weak Kosa events that have been identified in the free troposphere not only in spring but also in summer over Japanese archipelago. Electron microscopic experiments of the particles collected in the free troposphere confirmed that coarse and nonspherical particles observed by the mineral particle were major components of coarse mode (diameter larger than 1 microm) below about 5 km over Dunhuang, China.  相似文献   

2.
Soil dust particles transported from loess regions of the Asian continent, called Asian dust, highly influences the air quality of north-eastern Asia and the northern Pacific Ocean. In order to investigate the effects of these dust storms on the chemical composition of atmospheric aerosol particles with different size, measurements of size distributions of total aerosol and major ion species were carried out on Jeju Island, Korea during April 2001. Juju Island was chosen for the study because the levels of emissions of anthropogenic air pollutants are very low. A 5-stage cascade impactor was used to sample size-fractionated aerosol particles. Samples were analyzed for major water-soluble ions using Dionex DX-120 ion chromatograph. The average mass concentration of total aerosol was found to be 24.4 and 108.3 microg m(-3) for non-Asian dust and Asian dust periods, respectively. The total aerosol size distribution, measured during the non-Asian dust period, was bimodal, whereas the coarse particles dominated the size distribution of total aerosol during the Asian dust period. It was found that SO4(2-), NH4+ and K+ were mainly distributed in fine particles, while Cl-, NO3-, Na+, Mg2+ and Ca2+ were in coarse particles. Although SO4(2-) was mainly distributed in fine particles, during the Asian dust period, the concentrations in coarse particles were significantly increased. This indicates heterogeneous oxidation of SO2 on wet surfaces of basic soil dust particles. The NH4+ was found to exist as (NH4)2SO4 in fine particles, with a molar ratio of NH4+ to SO4(2-) of 2.37 and 1.52 for non-Asian dust and Asian dust periods, respectively. Taking into account the proximity of the sampling site to the sea, and the observed chloride depletion, coarse mode nitrate, during the non-Asian dust period, is assumed to originate from the reaction of nitric acid with sodium chloride on the surfaces of sea-salt particles although the chloride depletion was not shown to be large enough to prove this assumption. During the Asian dust period, however, chloride depletion was much smaller, indicating coarse nitrate particles were mainly produced by the reaction of nitric acid with surfaces of basic soil particles. Most chloride and sodium components were shown to originate from sea-salt particles. Asian dust aerosols, arriving at Jeju Island, contained considerable amounts of sea-salt particles as they passed over the Yellow Sea. Ca2+ was shown to be the most abundant species in Asian dust particles.  相似文献   

3.
Direct-reading aerosol measurement usually uses the optical properties of airborne particles to detect and measure particle concentration. In the case of occupational hygiene, mass concentration measurement is often required. Two aerosol monitoring methods are based on the principle of light scattering: optical particle counting (OPC) and photometry. The former analyses the light scattered by a single particle, the latter by a cloud of particles. Both methods need calibration to transform the quantity of scattered light detected into particle concentration. Photometers are simpler to use and can be directly calibrated to measure mass concentration. However, their response varies not only with aerosol concentration but also with particle size distribution, which frequently contributes to biased measurement. Optical particle counters directly measure the particle number concentration and particle size that allows assessment of the particle mass provided the particles are spherical and of known density. An integrating algorithm is used to calculate the mass concentration of any conventional health-related aerosol fraction. The concentrations calculated thus have been compared with simultaneous measurements by conventional gravimetric sampling to check the possibility of field OPC calibration with real workplace aerosols with a view to further monitoring particle mass concentration. Aerosol concentrations were measured in the food industry using the OPC GRIMM? 1.108 and the CIP 10-Inhalable and CIP 10-Respirable (ARELCO?) aerosol samplers while meat sausages were being brushed and coated with calcium carbonate. Previously, the original OPC inlet had been adapted to sample inhalable aerosol. A mixed aerosol of calcium carbonate and fungi spores was present in the workplace. The OPC particle-size distribution and an estimated average particle density of both aerosol components were used to calculate the mass concentration. The inhalable and respirable aerosol fractions calculated from the OPC data are closely correlated with the results of the particle size-selective sampling using the CIP 10. Furthermore, the OPC data allow calculation of the thoracic fraction of workplace aerosol (not measured by sampling), which is interesting in the presence of allergenic particles like fungi spores. The results also show that the modified COP inlet adequately samples inhalable aerosol in the range of workplace particle-size distribution.  相似文献   

4.
Aerosol particle samples were collected at ELKEM ASA ferromanganese (FeMn) and silicomanganese (SiMn) smelters at Porsgrunn, Norway, during different production steps: raw material mixing, welding of protective steel casings, tapping of FeMn and slag, crane operation moving the ladles with molten metal, operation of the Metal Oxygen Refinement (MOR) reactor and casting of SiMn. Aerosol fractions were assessed for the analysis of the bulk elemental composition as well as for individual particle analysis. The bulk elemental composition was determined by inductively coupled plasma atomic emission spectrometry. For individual particle analysis, an electron microprobe was used in combination with wavelength-dispersive techniques. Most particles show a complex composition and cannot be attributed to a single phase. Therefore, the particles were divided into six groups according to their chemical composition: Group I, particles containing mainly metallic Fe and/or Mn; Group II, slag particles containing mainly Fe and/or Mn oxides; Group III, slag particles consisting predominantly of oxidized flux components such as Si, Al, Mg, Ca, Na and K; Group IV, particles consisting mainly of carbon; Group V, mixtures of particles from Groups II, III and IV; Group VI, mixtures of particles from Groups II and III. In raw material mixing, particles originating from the Mn ores were mostly found. In the welding of steel casings, most particles were assigned to Group II, Mn and Fe oxides. During the tapping of slag and metal, mostly slag particles from Group III were found (oxides of the flux components). During movement of the ladles, most particles came from Group II. At the MOR reactor, most of the particles belonged to the slag phase consisting of the flux components (Group III). The particles collected during the casting of SiMn were mainly attributed to the slag phase (Groups III and V). Due to the compositional complexity of the particles, toxicological investigations on the kinetics of pure compounds may not be easily associated with the results of this study.  相似文献   

5.
An aerosol time-of-flight mass spectrometer (ATOFMS) was used to determine, in real time, the size and chemical composition of individual particles in the atmosphere at the remote inland site of Eskdalemuir, Scotland. A total of 51,980 particles, in the size range 0.3-7.4 microm, were detected between the 25th and 30th June 2001. Rapid changes in the number density, size and chemical composition of the atmospheric aerosol were observed. These changes are attributed to two distinct types of air mass; a polluted air mass that had passed over the British mainland before reaching Eskdalemuir, interposed between two cleaner air masses that had arrived directly from the sea. Such changes in the background aerosol could clearly be very important to studies of urban aerosols and attempts at source apportionment. The results of an objective method of data analysis are presented. Correlations were sought between the occurrence of: lithium, potassium, rubidium, caesium, beryllium, strontium, barium, ammonium, amines, nitrate, nitrite, boron, mercury, sulfate, phosphate, fluorine, chlorine, bromine, iodine and carbon (both elemental and organic hydrocarbon) in both fine (d < 2.5 microm) and coarse (d > 2.5 microm) particle fractions. Several previously unreported correlations were observed, for instance between the elements lithium, beryllium and boron. The results suggest that about 2 in 3 of all fine particles (by number rather than by mass), and 1 in 2 of all coarse particles containing carbon, consisted of elemental carbon rather than organic hydrocarbon (although a bias in the sensitivity of the ATOFMS could have affected these numbers). The ratio of the number of coarse particles containing nitrate anions to the number of particles containing chloride anions exceeded unity when the air mass had travelled over the British mainland. The analysis also illustrates that an air mass of marine origin that had travelled slowly over agricultural land can accumulate amines and ammonium.  相似文献   

6.
To investigate the diurnal profile of the concentration and composition of ambient coarse particles, three sampling sites were set up in the Los Angeles Basin to collect coarse particulate matter (CPM) in four different time periods of the day (morning, midday, afternoon and overnight) in summer and winter. The samples were analyzed for total and water-soluble elements, inorganic ions and water-soluble organic carbon (WSOC). In summer, highest concentrations of CPM gravimetric mass, mineral and road dust, and WSOC were observed in midday and afternoon, when the prevailing onshore wind was stronger. In general, atmospheric dilution was lower in winter, contributing to the accumulation of air pollutants during stagnation conditions. Turbulences induced by traffic become a significant particle re-suspension mechanism, particularly during winter night time, when mixing height was lowest. This is evident by the high levels of CPM mass, mineral and road dust in winter overnight at the near-freeway sites located in urban Los Angeles, and to a lesser extent in Riverside. WSOC levels were higher in summer, with a similar diurnal profile with mineral and road dust, indicating that they either share common sources, or that WSOC may be adsorbed or absorbed onto the surfaces of these dust particles. In general, the contribution of inorganic ions to CPM mass was greater in the overnight sampling period at all sampling sites, suggesting that the prevailing meteorological conditions (lower temperature and higher relative humidity) favor the formation of these ions in the coarse mode. Nitrate, the most abundant CPM-bound inorganic species in this basin, is found to be predominantly formed by reactions with sea salt particles in summer. When the sea salt concentrations were low, the reaction with mineral dust particles and the condensation of ammonium nitrate on CPM surfaces also contributes to the formation of nitrate in the coarse mode.  相似文献   

7.
Scanning electron microscopy-energy dispersive X-ray analysis (SEM-EDX) was used to understand the differences in morphology, elemental composition and particle density of aerosols in different five size ranges to further investigate the potential sources as well as transport of pollutants from/at a much polluted and a very clean area of Delhi. Aerosol samples were obtained in five different size ranges viz. > or = 10.9, 10.9-5.4, 5.4-1.6, 1.6-0.7 and < or = 0.7 microm from a considerably very clean and a much polluted area of Delhi. It was observed that at polluted area most of the particles irrespective of size are of anthropogenic origin. At clean area, in coarse size fractions particles are of natural origin while in fine size range the presence of anthropogenic particles suggests the transport of particles from one area to the other.  相似文献   

8.
An investigation of the variability in the size distribution of particle adsorbed polycyclic aromatic hydrocarbons (PAHs) on an inner city sampling site showed differences depending on the wind direction. Particle size distributions of PAHs from outdoor air sampling were measured in Munich from 1994 to 1997. The sampling site is located northeast of a crossing with heavy traffic and southwest of a large inner city park. Depending on the wind direction, three different size distributions of particle adsorbed PAHs were observed. The maximum PAH concentration on very small particles (geometric mean diameter 75 nm) was observed with wind from west to southwest coming directly from the crossing area or the roads with heavy traffic. The maximum PAH concentration on particles with geometric mean diameter of 260 nm was found on days with wind from the built-up area north of the sampling site. On particles with geometric mean diameter of 920 nm the maximum PAH concentration was found on days with main wind directions from northeast to east. On these days the wind is blowing from the direction of the city park nearby. The distribution of particle adsorbed PAHs within different particle size classes is substantially influenced by the distance of the sampling site from strong sources of PAH loaded particulate matter.  相似文献   

9.
The contributions of long range transported aerosol in East Asia to carbonaceous aerosol and particulate matter (PM) concentrations in Seoul, Korea were estimated with potential source contribution function (PSCF) calculations. Carbonaceous aerosol (organic carbon (OC) and elemental carbon (EC)), PM(2.5), and PM(10) concentrations were measured from April 2007 to March 2008 in Seoul, Korea. The PSCF and concentration weighted trajectory (CWT) receptor models were used to identify the spatial source distributions of OC, EC, PM(2.5), and coarse particles. Heavily industrialized areas in Northeast China such as Harbin and Changchun and East China including the Pearl River Delta region, the Yangtze River Delta region, and the Beijing-Tianjin region were identified as high OC, EC and PM(2.5) source areas. The conditional PSCF analysis was introduced so as to distinguish the influence of aerosol transported from heavily polluted source areas on a receptor site from that transported from relatively clean areas. The source contributions estimated using the conditional PSCF analysis account for not only the aerosol concentrations of long range transported aerosols but also the number of transport days effective on the measurement site. Based on the proposed algorithm, the condition of airmass pathways was classified into two types: one condition where airmass passed over the source region (PS) and another condition where airmass did not pass over the source region (NPS). For most of the seasons during the measurement period, 249.5-366.2% higher OC, EC, PM(2.5), and coarse particle concentrations were observed at the measurement site under PS conditions than under NPS conditions. Seasonal variations in the concentrations of OC, EC, PM(2.5), and coarse particles under PS, NPS, and background aerosol conditions were quantified. The contributions of long range transported aerosols on the OC, EC, PM(2.5), and coarse particle concentrations during several Asian dust events were also estimated. We also investigated the performance of the PSCF results obtained from combining highly time resolved measurement data and backward trajectory calculations via comparison with those from data in low resolutions. Reduced tailing effects and the larger coverage over the area of interest were observed in the PSCF results obtained from using the highly time resolved data and trajectories.  相似文献   

10.
A field study was carried out at six locations in the Lazio region (Central Italy) aimed at characterising atmospheric particulate matter (PM10 and PM2.5) from the point of view of the chemical composition and grain size distribution of the particles, the mixing properties of the atmosphere, the frequency and relevance of natural events. The combination of four different analytical techniques (ion chromatography, X-ray fluorescence and ICP for inorganic components, thermo-optical analysis for carbon compounds) yielded sound results in terms of characterisation of the air masses. During the first three months of the study (October-December 2004), many pollution events of natural (sea-salt or desert dust episodes) or anthropogenic nature were identified and characterised. More than 90% of the collected mass was identified by chemical analysis. The central role played by the mixing properties of the lower atmosphere when pollution events occurred was highlighted. The results show a major impact of primary anthropogenic pollutants on traffic stations and a homogeneous distribution of secondary pollutants over the regional area. An evaluation of the sources of PM and an identification of possible reliable tracers were obtained using a chemical fractionation procedure.  相似文献   

11.
A field study was carried out at six locations in the Lazio region (Central Italy) aimed at characterising atmospheric particulate matter (PM10 and PM2.5) from the point of view of the chemical composition and grain size distribution of the particles, the mixing properties of the atmosphere, the frequency and relevance of natural events. The combination of four different analytical techniques (ion chromatography, X-ray fluorescence and ICP for inorganic components, thermo-optical analysis for carbon compounds) yielded sound results in terms of characterisation of the air masses. During the first three months of the study (October–December 2004), many pollution events of natural (sea-salt or desert dust episodes) or anthropogenic nature were identified and characterised. More than 90% of the collected mass was identified by chemical analysis. The central role played by the mixing properties of the lower atmosphere when pollution events occurred was highlighted. The results show a major impact of primary anthropogenic pollutants on traffic stations and a homogeneous distribution of secondary pollutants over the regional area. An evaluation of the sources of PM and an identification of possible reliable tracers were obtained using a chemical fractionation procedure.  相似文献   

12.
During the 2002-2003 austral summer field season, aerosol samples were collected at a coastal (Terra Nova Bay--Northern Victoria Land) and an inland site (Dome C--East Antarctic Plateau). The sampling was carried out by stacked filter units made up of two filters at different porosity (5.0 and 0.4 microm at Terra Nova Bay and 3.0 and 0.4 microm at Dome C), able to roughly separate a coarse from a fine fraction. At Dome C, a further investigation on aerosol size distribution was performed by an inertial impactor able to collect aerosol particles on 8 size classes (from 10 to 0.4 microm). Atomic Force Microscopy was applied to the filter collecting the finer fraction in both sites in order to assess the real cut-off value of the filter sandwich apparatus and to reconstruct the volume size distribution. At the employed flow conditions, the real cut-off value was revealed to be about one third with respect to the filter nominal porosity in both stations. The size distribution plots showed a bimodal distribution with a mode centered around 0.22 microm in both the sites and a second broader mode which is centered between 0.3 microm and 1.2 microm diameter at Terra Nova Bay and shifted toward higher values (centred around 1.0 microm diameter) at Dome C. Each filter was analysed for the main and trace ionic components allowing evaluation of the contributions of primary and secondary aerosol sources at the two sites as a function of the particle size class. The coastal site is mainly affected by primary and secondary marine inputs: the sea spray contribution (Na+, Mg2+, Cl- and ssSO4(2-)) is dominant (77% w/w) in the coarse fraction whereas the biogenic source (methanesulfonate and nssSO4(2-)) prevails (67.5% w/w) in the fine fraction. In this fraction a significant contribution (15.5% w/w) is provided by ammonium likely to be related to surrounding penguin colonies. Dome C atmosphere is characterised by fine particles arising from secondary sources and long-range transport processes. The main component in the fine and coarse fractions at Dome C is sulfate whose nssSO4(2-) represents the 99.5% and the 92.3%(w/w) in fine and coarse fraction, respectively. The observed agreement between nssSO4(2-) and methanesulfonate temporal profiles in the fine fraction demonstrates that biogenic emissions dominate the inland background aerosol. Results from the sampling by the 8-stage impactor at Dome C are presented here: chloride and nitrate are mainly deposited on the 10-2.1 microm stages while the highest sulfate concentration was found in the submicrometric fraction which turned out to be the most acidic. Such a distribution is able to prevent nitrate and chloride re-emission as gaseous HCl and HNO3 in the 10-2.1 microm stages, arising from the exchange reaction between chloride and nitrate salts and sulfuric acid. Moreover, the concentration peak observed for nitrate in coarser fractions is probably related also to the formation of hygroscopic NH4NO3 particles and nitrate adsorption on sea salt particles.  相似文献   

13.
近年来,空气污染已成为长三角地区最关键的环境问题之一,气溶胶颗粒物(PM)是最主要的污染物之一.生物气溶胶作为颗粒物的重要组成部分,可能对空气质量和人体健康产生不利影响.利用高通量测序方法研究了江苏省泰州2019年11月至2020年1月期间发生沙尘和霾污染时生物气溶胶中细菌群落结构组成特征.结果表明:冬季沙尘天和霾天气...  相似文献   

14.
重庆城区不同粒径颗粒物元素组分研究及来源识别   总被引:2,自引:2,他引:0  
为研究重庆市大气颗粒物的污染特征及其来源,于2010年3—10月在主城区分别采集PM1.0、PM2.5和PM103种粒径的颗粒物样品,利用XRF分析其中的26种元素浓度。结果表明,重庆市主城区S元素在各粒径中含量都较高,细粒子中K的含量较高,粗粒子中Si、Ca和Fe的浓度较大。富集因子分析表明,主城区Cd、S、Se等污染元素的富集系数较大,且粒径越小,富集现象越明显。利用因子分析得出土壤风沙、扬尘、燃煤的燃烧、机动车燃油产生的尾气排放、生物质燃烧排放是重庆市颗粒物污染的主要来源。  相似文献   

15.
Ambient aerosols were collected during 2000–2001 in Gainesville, Florida, using a micro-orifice uniform deposit impactor (MOUDI) to study mass size distribution and carbon composition. A bimodal mass distribution was found in every sample with major peaks for aerosols ranging from 0.32 to 0.56 μm, and 3.2 to 5.6 μm in diameter. The two distributions represent the fine mode (<2.5 μm) and the coarse mode (>2.5 μm) of particle size. Averaged over all sites and seasons, coarse particles consisted of 15% carbon while fine particles consisted of 22% carbon. Considerable variation was noted between winter and summer seasons. Smoke from fireplaces in winter appeared to be an important factor for the carbon, especially the elemental carbon contribution. In summer, organic carbon was more abundant. The maximum secondary organic carbon was also found in this season (7.0 μg m−3), and the concentration is between those observed in urban areas (15–20 μg m−3) and in rural areas (4–5 μg m−3). However, unlike in large cities where photochemical activity of anthropogenic emissions are determinants of carbon composition, biogenic sources were likely the key factor in Gainesville. Other critical factors that affect the distribution, shape and concentration were precipitation, brushfire and wind.  相似文献   

16.
Real-time particle sizers provide rapid information about atmospheric particles, particularly peak exposures, which may be important in the development of adverse health outcomes. However, these instruments are subject to erroneous readings in high-humidity environments when compared with measurements from filter-based, federal reference method (FRM) samplers. Laboratory tests were conducted to evaluate the ability of three inlet conditioners to dry aerosol prior to entering a real-time particle sizer for measuring coarse aerosols (Model 3321 Aerodynamic Particle Sizer, APS) under simulated highly humid conditions. Two 30 day field studies in Birmingham, AL, USA were conducted to compare the response of two APSs operated with and without an inlet conditioner to that measured with FRM samplers. In field studies, the correlation of PM(10-2.5) derived from the APS and that measured with the FRM was substantially stronger with an inlet conditioner applied (r2 ranged from 0.91 to 0.99) than with no conditioner (r2 = 0.61). Laboratory experiments confirmed the ability of the heater and desiccant conditioner to remove particle-borne moisture. In field tests, water was found associated with particles across the sizing range of the APS (0.5 microm to 20 microm) when relative humidity was high in Birmingham. Certain types of inlet conditioners may substantially improve the correlation between particulate mass concentration derived from real-time particle sizers and filter-based samplers in humid conditions.  相似文献   

17.
The size, morphology and chemical composition of 8405 particles on moss surfaces (Hylocomium splendens) was investigated by scanning electron microscopy and energy-dispersive X-ray microanalysis. Two moss samples from three locations in Southern Norway (Alg?rd, Birkeland, Neslandsvatn) and two sampling years (1977 and 2005) each were selected leading to a total of 12 samples investigated. At all three locations, particle deposition decreased substantially with time. The major particle groups encountered include silicates, iron-rich silicates, metal oxides/hydroxides, iron oxides/hydroxides, carbonates, carbon-rich particles, silicate fly ashes, iron-rich silicate fly ashes, and iron oxide fly ashes. Between 1977 and 2005, the relative number abundance of the three fly ash groups decreased substantially from approximately 30-60% to 10-18% for the small particles (equivalent projected area diameter <1 microm), and from 10-35% to 2-9% for large particles with diameters ≥1 microm. This decrease of fly ash particles with time was overlooked in previous papers on atmospheric input of pollutants into ecosystems in Southern Norway. In general, the presence of fly ash particles is ignored in most source apportionment studies based on bulk chemical analysis. Consequently, the geogenic component (crustal component) derived from principal component analysis is overestimated systematically, as it has a similar chemical composition as the fly ash particles. The high abundance of fly ashes demonstrates the need to complement source apportionment based on bulk chemistry by scanning electron microscopy in order to avoid misclassification of this important anthropogenic aerosol component.  相似文献   

18.
In the frame of assessing exposure to nanostructured particles, the aim of this work is to study the performance of a new device devoted to the real-time measurement of nanostructured aerosol: the meDiSC (Diffusion Size Classifier, Matter Engineering, Switzerland). This instrument is based on unipolar diffusion charging of particles which are then collected successively in diffusion and filtration stages. From currents measured in these stages, the instrument is capable of determining aerosol mean size and number concentration. These data were compared to reference measurements regarding monodisperse aerosols in a range from 20 to 700 nm; the relative biases were found unsatisfying. This led us to investigate the principle of the instrument. Consequently, the charging law of the diffusion charger was experimentally established, as well as the calibration curve allowing the determination of the mean size of the particles. The latter analysis was completed by a model based on diffusion theory. Our results indicate the possibility to improve the range of size measurement up to 350 nm. Measured particle size and number concentration were also used to calculate geometric surface-area concentration; the experimental data were compared to a reference calculated surface-area concentration. The results demonstrate the possibility to evaluate this parameter within acceptable uncertainty. In a second step, the meDiSC was challenged with polydisperse aerosols. It was observed that meDiSC overestimates particle size by a factor 1.7, while particle number concentrations are found within ±40% of the reference. The model applied to polydisperse aerosols indicates that polydispersity little influences particle size up to 300 nm while geometric standard deviation remains below 1.7.  相似文献   

19.
In this study, the size distribution of airborne particles and related heavy metals Co, Cd, Sn, Cu, Ni, Cr, Pb and V in two urban areas in Istanbul: Yenibosna and Goztepe, were examined. The different inhalable particles were collected by using a cascade impactor in eight size fractions (<0.4 μm, 0.4-0.7 μm, 1.1-2.1 μm, 2.1-3.3 μm, 3.3-4.7 μm, 4.7-5.8 μm, 5.8-9 μm and >9 μm) for six months at each station. Samples were collected on glass fiber filters and filters were extracted and analyzed using ICP-MS. Log-normal distributions showed that the particles collected at the Yenibosna site have a smaller size compared to the Goztepe samples and the size distribution of PM was represented the best by the tri-modal. The average total particle concentrations and standard deviations were obtained as 67.7 ± 17.0 μg m(-3) and 82.1 ± 21.2 μg m(-3), at the Yenibosna and G?ztepe sites, respectively. The higher metal rate in fine and medium coarse PM showed that the anthropogenic sources were the most significant pollutant source. Principal component analysis identified five components for PM namely traffic, road dust, coal and fuel oil combustion, and industrial.  相似文献   

20.
Several samples of airborne particulate matter (PM), collected from 6th November to 6th December 2003 at a coastal site in the south-east of Italy, have been analyzed by different techniques to characterize elemental composition and morphological properties of the inorganic PM fraction and obtain preliminary results on anthropogenic contributions. Al, Cr, Cu, Fe, Mn, V, Pb, Ti, Ca and Zn mass concentrations, evaluated by an inductively coupled plasma atomic emission spectrometer, account for up to l% of the bulk PM mass in the investigated samples. According to geochemical calculations, Ca, Al, Fe and Mn are predominantly of crustal origin, while Cr, Cu, Pb, V, Ti and Zn heavy metals are of anthropogenic origin. Ion chromatography analyses have identified sulfate (SO(4)(2-)) nitrate (NO(3)(-)), sodium (Na(+)), and ammonium (NH(4)(+)) as the main ionic components accounting for up to 38% of the total PM mass and up to 90% of the total ionic mass. Besides ion chromatography, X-ray energy dispersive (EDX) microanalyses have revealed the high variability of Cl: its weight concentration varies from about 24% to below the detection limit (>or=0.5%) in the investigated samples. The marked anti-correlation between the excess of S and the Cl/Na ratio has allowed inferring that reactions between sea salt particles and acidic sulfates, which liberate HCl gas to the atmosphere leaving particles enriched in non-sea-salt sulfates, have significantly contributed to chloride depletion. Morphological analyses by scanning electron microscopy have shown that about 90% of the total sampled particles have a diameter 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号