首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 31 毫秒
1.
为研究菏泽市环境空气中VOCs的污染特征,参照EPA TO-15方法对菏泽市环境空气中的VOCs进行分析,并对VOCs的组成、浓度状况、来源和对臭氧生成潜势的贡献等进行探讨。结果表明,该市环境空气中共定性检出挥发性有机物82种,其中烷烃和苯系物分别占有机物种类的29%、22%,VOCs平均浓度为25.6μg/m3。监测期间,环境空气中的VOCs主要来自汽车尾气排放、汽油蒸汽、液态石油的挥发,其中交通尾气排放是该区域监测期间的主要排放源。烷烃、芳烃是对菏泽市环境空气中臭氧生成潜势贡献较大的关键活性组分,其对臭氧生产潜势的贡献率分别为32.6%、49.9%。  相似文献   

2.
2020年4—9月通过离线采样研究了盐城市城区大气中的挥发性有机物(VOCs)浓度水平及组成特征、臭氧生成潜势、二次有机气溶胶生成潜势以及毒性效应等多效应评估和来源贡献。结果表明:盐城市城区VOCs平均体积浓度为35.09×10-9,盐塘湖公园站点浓度最高;盐城市VOCs主要组分为含氧有机物(OVOCs)和烷烃。通过挥发性有机物多效应评估发现,关键物种为乙醛、对二乙苯、丙酮、甲苯和间/对二甲苯等。采样期间对VOCs浓度的主要贡献来源为二次生成、工业排放和交通排放。  相似文献   

3.
为探究威海市秋季挥发性有机物(VOCs)污染特征及来源,于2021年9月10—20日采用手工加密监测法对威海市秋季大气中VOCs进行监测,分析了气象因素对臭氧(O3)及其前体物的影响和VOCs污染特征,并利用正交矩阵因子模型(PMF)方法对VOCs来源进行了研究。结果表明,威海市温度对O3生成影响明显,尤其是高温、低湿、扩散较差气象条件下,有利于O3前体物的反应消耗,促使O3生成及累积。观测期间,威海市秋季φ(VOCs)平均值为47.84×10-9,VOCs中体积分数占比最高的为含氧挥发性有机物(OVOCs),占比为58.0%,其次为烷烃(21.6%)、卤代烃(10.2%)。O3生成潜势(OFP)平均值为393.95μg/m3,对OFP的贡献占比最高的为OVOCs(74.1%),其次为芳香烃(12.6%)、烷烃(7.0%)和烯烃(5.4%)。PMF源解析结果显示,机动车尾气排放源、工艺过程源、船舶尾气排放源和溶剂使用源是威海市秋季VOCs排放主要来源,贡献占比分别为30.4%,23.9%,21.1%,16.5%。控制机动车排放和工艺过程排放是控制威海市秋季VOCs污染的重要途径。  相似文献   

4.
运用大气挥发性有机物(VOCs)快速在线连续自动监测系统,于2018年7月对南通市区环境空气中VOCs进行观测,分析VOCs的浓度状况、组成特征、对臭氧生成潜势的贡献及主要来源。结果表明:观测期间共检出100种VOCs,总挥发性有机物(TVOCs)的平均体积分数为(38. 18±23. 63)×10-9,各物种体积分数从大到小顺序依次为烷烃>含氧有机物>芳香烃>卤代烃>烯、炔烃;芳烃和烯烃是最主要的活性物种,间/对二甲苯、甲苯、邻二甲苯等是VOCs的关键活性组分;利用PMF模型解析得到VOCs的主要污染来源是工业排放与溶剂使用、机动车尾气排放、燃料挥发排放和生物源排放。  相似文献   

5.
基于2019年沈阳市4个不同功能区挥发性有机物(VOCs)小时分辨率的在线监测数据,分析了环境空气中VOCs的污染特征及来源。结果表明,观测期间沈阳市环境空气中VOCs日平均体积分数为(31.5±13.3)×10-9,4个功能区VOCs体积分数均呈现出冬季明显大于夏季的特征;工业区环境空气中VOCs体积分数明显高于其他功能区。商业交通居民混合区、文化居民混合区、郊区VOCs体积分数呈现明显双峰结构,工业区双峰结构不明显。工业区VOCs以新鲜排放为主,而其他3个区域为老化气团的传输。工业区春、夏季环境空气中VOCs来源包括燃料挥发源(26.90%)、溶剂与涂料源(17.69%)、燃烧源(16.40%)、化工源(15.69%)、交通源(7.57%)和炼油炼焦源(4.15%)。秋、冬季VOCs的来源包括燃烧源(30.77%)、溶剂与涂料源(20.26%)、燃料挥发源(18.79%)、化工源(11.54%)、炼油炼焦源(9.34%)和交通源(5.51%)。  相似文献   

6.
青岛市环境空气中VOCs的污染特征及化学反应活性   总被引:9,自引:0,他引:9  
利用2012年青岛市挥发性有机物(VOCs)监测数据,系统分析了VOCs的污染特征、来源和化学反应活性。结果表明,青岛市VOCs浓度处于较低水平,且烷烃是VOCs的主要组分,占60%以上。夏、秋季的VOCs浓度高于春、冬季,且9月的浓度高于其他月份,日变化呈现\"两峰一谷\"趋势,与交通早晚高峰对应。VOCs各组分均表现出周末效应,说明机动车源和工业源的重要影响,优势物种的相关性分析进一步证明了这一点。对比各组分的OH消耗速率,得出烯烃的臭氧生成贡献高于烷烃和芳香烃,控制机动车尾气、溶剂挥发、化石工业等VOCs排放源将有利于降低大气中的臭氧浓度。  相似文献   

7.
宁波市环境空气中VOCs污染状况及变化趋势分析   总被引:3,自引:4,他引:3  
基于近7年来的连续监测数据,对宁波市环境空气中挥发性有机物(VOCs)的污染状况及变化趋势进行了初步分析。研究表明:在宁波市环境空气中检测出94种VOCs,其主要成分是饱和烷烃、芳烃、烯烃、卤代烃、卤代芳烃、含氧有机物等,有37种属有毒有害物质,其中苯系物含量最高;宁波市环境空气中苯系物的污染程度与国内外城市基本处于同一水平,近年来的污染状况变化不大,没有明显恶化;空间分布特征显示一类保护区VOCs的排放以天然源为主,二类各功能区VOCs的排放由天然源和局部人为污染源共同形成,三类区以工业污染源排放为主;时间变化趋势显示VOCs在冬季和春季的平均浓度比其他季节高,VOCs的日变化基本呈现2个主浓度峰值特征,跟城市交通流量变化具有很好相关性。  相似文献   

8.
石家庄市冬季大气中VOCs污染特征分析   总被引:2,自引:3,他引:2  
为弄清石家庄市冬季大气中VOCs的污染特征,采用美国环保局TO-15方法对石家庄市冬季大气中VOCs组成进行了定性和定量分析。在此基础上,进行了VOCs的月度变化分析、春节期间的变化分析,并进行了VOCs与空气质量指数AQI、PM2.5等之间的相关性分析;根据VOCs组成及变化情况和相关性,分析了其可能的来源。结果表明,石家庄市冬季大气中VOCs的质量浓度为145.7~1 410.7μg/m3,VOCs组分主要有丙酮、二氯甲烷、苯、乙酸乙酯、甲苯、1,2-二氯丙烷、三氯甲烷。春节期间,大气中VOCs的浓度有大幅的下降,比日常均值下降了40.9%。AQI较高时,大气中VOCs浓度有所升高。石家庄市冬季大气中丙酮、二氯甲烷、乙酸乙酯等主要来源于医药化工生产活动,苯、甲苯主要来源于煤燃烧。  相似文献   

9.
利用合肥市臭氧和VOCs连续观测数据分析了合肥市臭氧及其前体物污染特征,并使用NAQPMS模型研究了合肥市不同季节臭氧来源情况。结果表明:O3已经成为影响合肥市环境质量的主要污染因子,O3高值区主要集中在5—6月和9月。合肥市大气VOCs中烷烃含量最丰富,其次是烯烃、芳香烃和炔烃;主要物种为乙烷、丙烷、乙炔、正戊烷、乙烯、环戊烷、异戊烷、正丁烷、异丁烷和甲苯。合肥市O3生成主要受VOCs控制,其中,烯烃是合肥市O3生成贡献最大的关键活性组分,乙烯的OFP贡献率居首位。合肥市不同季节O3来源差异较大,其中,本地排放是主要来源,夏季占比为50%,其余季节占比为30%~45%,O3存在跨省长距离输送特征,主导风向的变化是造成合肥市臭氧来源季节性变化的重要因素。  相似文献   

10.
为了解冬季采暖对济南市大气PM2.5中汞浓度的影响,在济南市城郊开展了为期超过两年的PM2.5样品采集工作,共计采集有效样品481个,测定并分析其中的颗粒汞(PHg)浓度和汞含量变化特征。结果表明,济南市大气PHg在采暖期的浓度均值为583.1 pg/m3,约为非采暖期的1.4倍,在国内外城市中处于中等偏上水平。济南市大气PM2.5对PHg具有极强的富集能力,且在采暖期更强,可能与燃煤等活动排放了更多的超细颗粒物有关。在采暖期,大气PHg浓度主要受煤炭燃烧源和交通排放源影响,两者分别贡献了总方差的39.2%和16.7%;在非采暖期,气象条件季节性变化、交通排放源、煤炭燃烧源的影响显著,三者分别贡献了总方差的32.4%、15.8%、12.0%。高浓度PHg主要来源于分布在采样站点东北偏东方向上的众多燃煤工业企业。此外,济南市大气PHg还主要受来源于鲁西南地区的区域污染气团的影响,途经污染较重的京津冀地区的污染气团对济南市PHg浓度也有较大贡献。在非采暖期,济南市PHg还受到来自东南和西南方向的清洁海洋气团的显著影响。  相似文献   

11.
选择某喷涂企业附近环境空气为采样点位,在3个监测时段(5、9、11月)基于成分监测车在线监测107种挥发性有机物(VOCs),分析环境空气中VOCs污染特征和成分,结合走航监测车进行溯源分析,利用MCM模式结合敏感性实验研究了臭氧生成机制。结果表明:5月A时段的VOCs总浓度(247.43μg/m3)高于其他2个监测时段(134.29、107.07μg/m3),体现了VOCs季节性的变化趋势;3个监测时段VOCs浓度均以含氧有机物为主,其占比分别为44.36%、55.30%和37.90%,其次为芳香烃和烷烃,但不同监测时段同类VOCs占比各不相同,体现了不同季节VOCs浓度的差异性。3个监测时段均排在浓度排名前10位的物种有6种,分别为乙醇、丙酮、对/间二甲苯、苯、二氯甲烷和甲苯,说明该监测点位存在稳定污染排放源。走航溯源监测获得空气点位及附近喷涂企业内VOCs浓度和成分特征,结果显示环境大气中的VOCs主要组分来自喷涂企业厂区使用的挥发性溶剂的排放和油性漆的挥发排放。研究臭氧生成潜势(OFP)可知,芳香烃的OFP值在3个监测时段占比最高,对...  相似文献   

12.
2020年7月对兰州市城区大气挥发性有机物进行连续24 h测定,研究其污染特征和臭氧生成潜势等,并进行来源解析。结果表明:兰州超级站点 VOCs的平均质量浓度为99.59 μg/m3,各类挥发性有机物中烷烃占比最大,占总挥发性有机物浓度的33.81%;对挥发性有机物进行臭氧生成潜势分析,排名靠前的物种为甲苯、乙烯、乙酸乙烯酯;利用PMF模型对挥发性有机物进行源解析,结果显示VOCs来源贡献为机动车源(31.30%)、油气挥发或泄漏(24.10%)、溶剂使用源(18.60%)、燃烧和化工工艺源(17.20%)、天然源(8.80%)。建议将控制机动车排放、油气挥发和泄漏、溶剂使用等作为消减城市大气挥发性有机物和臭氧污染的重点。  相似文献   

13.
在石家庄臭氧(O3)污染较重的7月,开展连续10 d(2018年7月6—15日),8次/d的加密监测,获得大气挥发性有机物(VOCs)苏玛罐样品数据及O3在线监测数据,分析了采样期间O3污染特征、VOCs组成及O3生成潜势(OFP)特征,并对VOCs来源进行了研究。结果表明,采样期间O3-3 h浓度最高为243 μg/m3,与相对湿度存在明显的反相关关系,与温度和风速存在良好的正相关关系。VOCs平均体积分数为(75.28±5.81)×10-9,各组分浓度所占比例为OVOCs>烷烃>卤代烃>烯炔烃>芳香烃>其他组分。各类VOCs中,OVOCs对OFP的贡献最大,占64.12%。作为光化学反应的中间产物,OVOCs的一次来源较少,表明二次污染物对石家庄大气O3生成有重要贡献。从具体组分来看,OFP值排名前十的组分以OVOCs为主,其中最高的为甲基丙烯酸甲酯。采样期间,VOCs一次来源主要为汽油车和柴油车尾气排放,贡献率分别为38%与32%;溶剂使用、汽油挥发、生物排放分别占13%、11%、6%。VOCs主要受本地排放影响。  相似文献   

14.
首次选取中山市23个镇街典型点位,分别在2022年夏季和冬季开展挥发性有机物(VOCs)手工采样监测,分析其污染特征、臭氧生成潜势(OFP),并评估各点位的VOCs污染防治能力。结果显示:在夏季,东区点位VOCs质量浓度最高,达3 252 μg/m3;而在冬季,大涌点位VOCs污染最严重,高达2 785 μg/m3。各点位监测结果与中山市气候特征和经济发展特点相吻合。总体上,体积分数位于前列的VOCs成分主要有芳香烃、醛酮类和烷烃,质量浓度位于前列的物种主要有乙酸乙酯、2-丁酮、丙酮、二氯甲烷和苯系物。各点位的冬季OFP比夏季更高,其中大涌点位的OFP在两个季节均为最高。芳香烃在冬季对各点位OFP的贡献特别显著。在夏季,对OFP贡献突出的物种主要有乙醛、异戊二烯、间/对-二甲苯和邻-二甲苯;在冬季,对OFP贡献突出的物种主要有间/对-二甲苯、邻-二甲苯和甲苯。通过数据模型分析发现,中山港、小榄和坦洲点位的VOCs污染防治能力强,大涌点位的VOCs污染防治能力差,中心城区、新区和经济薄弱区域点位的VOCs污染防治能力较差,其余点位的VOCs污染防治能力相对较强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号