首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
对2015—2016年盐城市城区4个空气质量自动监测国控站点的O_3监测数据进行分析,探讨盐城市O_3污染水平、时空分布特征及其与前体物、气象因子之间的关系。结果表明,各站点O_3污染水平较为接近,2016年各站点O_3-8h第90百分位数超标天数较2015年分别下降了43.5%,50.0%,8.7%和43.6%;全年O_3逐月值大致呈双峰分布,高ρ(O_3)主要集中在4—10月;O_3日变化曲线呈明显的单峰分布,一般在05:00—07:00最低,13:00—15:00达到峰值;不同季节的O_3日变化情况有所差异,午后O_3峰值与O_3日变化幅度均在春季最大,冬季最低;NO、NO_2和CO的日变化曲线均呈现出早晚双峰分布,受早高峰影响,一般在07:00左右达到一日中的最大值;O_3与NO_x等前体物均显著负相关,高ρ(O_3)往往出现在高ρ(CO)/ρ(NO_2)时;总体上各站点的ρ(O_3)随风速的增大而增大。  相似文献   

2.
对佛山市2011—2014年O_3监测数据进行分析,结果表明,ρ(O_3)日变化呈现明显的单峰特征,2011—2014年O_3日最大8小时滑动均值(O3-8 h)的年评价值没有出现显著的下降趋势,超标值多出现在8—10月。夏季O3-8 h与日平均气温的相关系数较高,O_3污染多发生在气温30℃,相对湿度为50%~70%的气象条件下。相对湿度60%,气温为20~25℃,也可能出现O3污染。10℃时,不同的温度条件下,O_3与PM_(2.5)存在正相关关系。在不同的季节时段,O_3-8 h基本随着ρ(NO_2)/ρ(NO)增大而增大。  相似文献   

3.
郑州市近地面臭氧污染特征及气象因素分析   总被引:1,自引:0,他引:1  
利用国控站点空气质量在线监测数据,识别郑州市2015年近地面臭氧(O_3)污染状况、特征及与颗粒物和氮氧化物水平关系,并以烟厂站为例分析郑州市O_3污染与气象要素的相关性。结果表明:郑州市O_3日最大8 h平均值具有明显季节变化,呈现出夏季春季秋季冬季的特征,夏季岗李水库站O_3月均质量浓度为155.5μg/m3,其余站点月均质量浓度为110~150μg/m3;夏季O_3每日最大8 h浓度具有显著"周末效应",其他季节较不明显;O_3小时浓度日变化呈单峰型分布,在15:00—16:00达到峰值,早晨07:00达到谷值;前体物NOx小时浓度日变化呈双峰型分布,与O_3具有显著负相关性;气象因素相关性分析结果表明,郑州市O_3污染日多出现于高温、低湿和微风等条件,这些气象因素有利于O_3生成和累积。  相似文献   

4.
利用2016年南京市臭氧(O_3)及前体物监测数据,对南京市O_3污染现状、变化特征及其与前体物的关系进行分析。结果表明,2016年南京市O_3超标56 d,超标率15.3%,O_3日最大8 h滑动平均值的第90百分位数为184μg/m~3,超标0.15倍。O_3超标主要集中在4—9月份,日变化呈现"单峰"型特征,峰值出现在14:00,而上午8:00—10:00时段O_3浓度升幅最显著,小时浓度升幅超过20%。前体物VOCs和NO_2浓度变化与O_3呈反相关,且VOCs和NO_2浓度冬季最高,夏季最低,秋季和春季基本相当。  相似文献   

5.
利用2013年佛山市8个国控大气自动监测站点ρ(PM_(2.5))监测数据,分析佛山市PM_(2.5)污染的时空分布特征,并诊断诱发PM_(2.5)高污染过程的关键天气类型。结果表明,佛山市2013年PM_(2.5)年均值为53μg/m3,高于国家二级标准,污染主要集中在三水区中部、南海区中部和禅城区北部。佛山市ρ(PM_(2.5))表现出明显的季节变化和日变化特征,秋、冬季是PM_(2.5)的高污染季节,其值夜间略高于白天,呈典型的双峰型分布,08:00—09:00短暂出现一个浓度的小峰值,推测与上班交通高峰有关。对PM_(2.5)持续高污染发生的地面天气形势分析表明,高压出海是诱发佛山市PM_(2.5)高污染事件最主要的天气类型。  相似文献   

6.
以沈阳2013—2015年臭氧(O_3)监测数据为基础,从地域差异及时间变化上分析了沈阳O_3浓度变化特征。结果表明:沈阳城市外围O_3浓度高于城市中心;O_3浓度变化具有明显季节特征,夏季O_3浓度最高,冬季最低;O_3浓度日变化呈单峰分布,谷值出现在06:00,峰值出现在14:00;O_3浓度出现明显"周末效应",周末白天O_3浓度高于工作日O_3浓度,夜间差异不大。  相似文献   

7.
运用2013—2016年贵阳市环境空气自动监测站臭氧(O_3)的监测数据以及气象观测资料,分析该地区近地面O_3浓度的时空变化特征及与气象因子的关联性。结果表明,近年来贵阳市近地面O_3小时浓度均值有逐年升高趋势,增速为1. 1~5. 0μg/(m~3·a)。O_3浓度昼间变化呈明显单峰形分布,08:00左右出现最低值,15:00—16:00达到最大峰值,浓度高值主要分布在12:00—18:00。日照时数每增加1 h,则近地面O_3日最大8 h平均浓度增加8μg/m~3左右,日照时数大于8 h,则近地面O_3日最大8 h平均浓度超过100μg/m~3; O_3小时浓度与温度呈正相关(r=0. 724,α=0. 01),与相对湿度呈负相关(r=-0. 531,α=0. 01)。当日照时数大于8 h、温度超过25℃、相对湿度小于60%时,贵阳市近地面O_3容易出现高浓度值。  相似文献   

8.
成都市O3浓度的时间变化特征及相关因子分析   总被引:8,自引:7,他引:1  
为深入认知成都市O_3浓度的时间变化规律及其影响因子,基于2013年1月1日—12月31日市区站点O_3、NO、NO_2、NO_x的逐时监测资料以及成都市气象站的气象数据逐时观测资料,据此对O3的季变化、日变化、"周末效应"、"节假日效应"进行了讨论,并对其浓度影响因子进行分析。结果表明:成都市O_3浓度季变化呈现明显夏高冬低的特征,浓度最大值出现在8月。O_3浓度日变化为单峰型,夏季峰值出现在15:00,冬季峰值出现在16:00。市区存在"周末效应",即周末O_3浓度总体比工作日高;"节假日效应"则表现出复杂多变性,受气象条件以及人为活动等多种随机因素的影响。O_3日平均浓度与NO、NO_2、NO_x、相对湿度呈明显负相关,与温度、风速呈明显正相关。  相似文献   

9.
采用2016年大气多参数站监测数据,分析连云港市大气中ρ(黑碳气溶胶)的小时及月度变化规律,结果表明,观测期间,黑碳气溶胶与NO_2、CO、PM_(10)、PM_(2.5)显著相关,与风速、能见度等呈负相关;黑碳气溶胶年均值为2.10μg/m~3,日变化呈明显双峰型,峰值出现在08:00和21:00左右;从季节看,ρ(黑碳气溶胶)冬春季高、夏秋季低;在不利气象条件时,ρ(黑碳气溶胶)有所增高,通过模型分析化石燃料燃烧产生的黑碳占比增大,说明在不利气象条件时,化石燃料燃烧产生的黑碳是影响ρ(黑碳气溶胶)及ρ(颗粒物)上升的主要因素。  相似文献   

10.
利用泉州城区2017年全年连续观测的O_3和气象要素资料,统计了臭氧浓度的分布特征,分析了气象要素对O_3质量浓度的影响,对比了O_3超标日和非超标日的气象要素特征。结果表明:(1)泉州市O_3质量浓度月变化呈双峰形,春季最高,夏季最低;日变化呈单峰形,最大值出现在13:00—14:00,最小值出现在06:00—07:00,上下游站O_3浓度存在明显传输效应。(2)泉州O_3质量浓度与相对湿度呈负相关,其相关性最高;与风速呈正相关,其相关系数最低,且存在明显区位性差异;与气温的相关性比较复杂,既有正相关,也有负相关。(3)各站点O_3小时质量浓度超标时,均对应2个气象要素区间值。(4)对比污染日非污染日发现,污染日相对湿度较低(50%~60%),非污染日较高(70%~80%);污染日温度略低于非污染日;污染日风向总体为西南偏南,非污染日风向为西南-东南。  相似文献   

11.
气象条件对沈阳市环境空气臭氧浓度影响研究   总被引:26,自引:20,他引:6  
利用2013年沈阳市环境空气监测点位臭氧监测数据,分析沈阳臭氧浓度变化特征,结合气象资料分析了其对臭氧浓度的影响。结果表明,沈阳市不同区域臭氧浓度变化特征基本一致。臭氧浓度日变化呈单峰趋势,最大值出现在14:00左右,最小值出现在6:00左右;臭氧浓度变化具有明显的季节特征,夏季臭氧浓度最高,春秋次之,冬季最低;臭氧浓度受温度、风速、湿度、能见度、天气情况影响,臭氧浓度变化是多因素共同作用的结果。  相似文献   

12.
基于2016—2018年安徽省68个国控环境空气质量自动监测站点的臭氧(O_3)监测数据,研究分析了安徽省O_3污染特征及其与气象因子的相关性。结果表明:安徽省O_3污染程度呈现逐年加重趋势,并有显著的季节和月度变化特征。2016—2018年,各年度单月O_3日最大8小时滑动平均质量浓度第90百分位数的最大值分别出现在9月、5月、6月。O_3日变化趋势为典型的单峰形,各年度最低值出现在晨间07:00左右,最高值则是在15:00—16:00。全省O_3浓度总体上呈现出北高南低的空间特征。温度、相对湿度与O_3浓度分别呈现显著正相关、负相关,但在不同季节存在一定差异,其中,春秋季温度与O_3浓度的相关性好于夏冬季,夏季相对湿度与O_3浓度的相关性最为显著。O_3浓度在平均风速为2.1~2.2 m/s时更易出现超标。中部和北部城市在东南风的作用下易出现O_3超标并达到O_3浓度高值,而南部地区在风向为西风时更容易出现O_3超标。  相似文献   

13.
海口市臭氧污染特征   总被引:8,自引:7,他引:1  
基于2013—2015年海口市4个空气质量自动监测站点数据,结合气象资料,分析了海口市O_3的污染特征。结果表明:海口市O_3总体优良,优良天数比例为99.4%,污染天数均为轻度污染;在良和污染天数中,O_3作为首要污染物的天数占40%,超过其他5项污染物占比。海口市10月O_3浓度最高。O_3月均浓度与温度呈负相关关系,同时与风向有密切关系:5—8月气温较高,以南风为主,O_3浓度较低;1月北风频率较高,易受外来污染传输作用,O_3浓度相对较高。O_3超标日以东北风为主,日变化并未呈现单峰型特征,12:00—22:00时段O_3浓度在10%范围内小幅变化。台风外围型和北方冷高压底部型是造成海口市O_3超标的2类典型天气形势。  相似文献   

14.
大连市臭氧污染特征及典型污染日成因   总被引:1,自引:1,他引:0  
通过对大连市区10个空气监测子站的监测数据进行分析,探讨了大连市臭氧污染的时空分布、气象条件对臭氧污染的影响,对臭氧污染日进行了归类分析。结果表明,大连市臭氧污染主要出现在4—10月。在强紫外辐射、高温、低湿、低压和低风速的气象条件下,监测点位的臭氧浓度较高。臭氧污染日的日变化分为单峰型、双峰型和夜间持续升高型3种类型。通过对2015年的一次高浓度臭氧污染过程的气象条件、污染物浓度和污染气团轨迹进行分析,发现臭氧浓度在夜间持续升高现象与区域输送密切相关。  相似文献   

15.
随着社会经济的快速发展,我国臭氧污染日益严重,因此,研发出能定量评估气象条件对臭氧污染影响程度的诊断指数,成为提高和改善气象服务质量的重要任务之一。利用中国大陆地区2018年温度、总云量、风速、风向、相对湿度等气象场数据与臭氧浓度数据,研究臭氧污染敏感气象条件,统计各气象因子分布在不同数值区间时发生臭氧污染事件的相对频率(即分指数),按照分指数最大值和最小值的差值大小进行排序,筛选出10个与臭氧污染密切相关的气象因子,将10个气象因子的分指数进行累加,即得出臭氧综合指数。随后,对各地构建臭氧综合指数时采用的气象要素进行统计,得到出现频率最高的3个气象要素,并参考这些气象要素构建了臭氧潜势指数。分别以臭氧潜势指数和臭氧综合指数对北京市2019年臭氧日最大浓度建立拟合预报模型,结果表明:两类指数的拟合预报值与实测值有着相似的变化趋势;利用臭氧综合指数计算得到的预报值与实测值的相关系数为0.76,优于利用臭氧潜势指数计算得到的预报值与实测值的相关系数(0.64)。  相似文献   

16.
厦门市空气质量臭氧预报和评估系统   总被引:10,自引:10,他引:0  
为了评价和预测厦门市区空气中臭氧的污染水平,运用2006~2009年的监测数据对臭氧的污染成因及其变化规律进行研究。通过风向、风速、气温、湿度等气象因子对臭氧浓度影响的分析,进而运用多元线性回归法建立厦门市臭氧预报及评估系统。  相似文献   

17.
广州市近地面臭氧时空变化及其与气象因子的关系   总被引:2,自引:0,他引:2  
利用2012年1月至2016年2月广州市环境空气自动监测数据和气象观测数据,对广州市近地面臭氧的时空分布特征及其与气象因子的关系进行分析。结果表明:2012—2015年广州市臭氧日最大8 h滑动平均值的第90百分位数波动变化,年变化率依次为-14.3%、5.8%、-12.1%;广州市臭氧浓度呈现夏、秋季高,春、冬季低的显著季节变化特征;臭氧日最大8 h平均值的月均值和第90百分位数最高的月份一般分别出现在10月和7—8月;臭氧浓度的日变化曲线为单峰型,最大值一般出现在14:00或15:00;臭氧浓度随垂直高度的升高而增大,从低层(6 m点位或地面站)到中层(118 m和168 m点位)、中层到高层(488 m点位)臭氧日最大8 h滑动平均值的增长率分别为18.3%和39.1%;广州市中心城区臭氧浓度低于南北部城郊,夏、秋季高值区与夏、秋季主导风向相对应;臭氧浓度受降水、气温、相对湿度和风速等气象因子影响,臭氧浓度的超标是多种因素综合作用的结果。  相似文献   

18.
2013—2015年,天津市臭氧(O_3)浓度整体呈下降趋势,污染状况略低于京津冀区域的其他城市。O_3浓度春、夏季高,冬季低,高值主要集中在5—9月,浓度从早上06:00开始升高,至中午14:00达到峰值。污染主要集中在中心城区、西部和北部地区,东部、南部和西南部地区污染相对较轻。O_3浓度在温度303 K以上、相对湿度70%以下或西南风为主导时较高。VOCs/NOx比值低于8,O_3的生成处于VOCs控制区。芳香烃类和烯烃类对天津市O_3生成贡献最大,其中,乙烯和甲苯为O_3生成潜势贡献最大的物种,其次为间/对二甲苯、丙烯、邻二甲苯、异戊二烯、反-2-丁烯、乙苯等,通过控制汽车尾气、化工行业及溶剂使用等对O_3生成潜势贡献大的VOCs排放源可有效控制天津市O_3污染。  相似文献   

19.
京津冀区域臭氧污染趋势及时空分布特征   总被引:15,自引:11,他引:4  
为研究京津冀区域的臭氧(O_3)污染情况及其时空分布特征,对2013—2015年京津冀区域13个城市80个国家环境空气监测点位的监测数据进行了统计分析。结果表明:2013—2015年,京津冀区域O_3污染状况整体呈加重趋势,其中2014年污染状况最为严重。13个城市中O_3污染最严重的城市为北京和衡水,连续3年均超标,且处于上升态势中。区域内不同城市O_3污染趋势并不相同。京津冀区域O_3浓度变化呈明显的季节变化特征,春末和夏季的O_3污染最严重。O_3-8 h(臭氧日最大8 h均值)年均值的高值区主要分布在北京中北部、承德和衡水等,2013—2015年第90百分位O_3-8 h的高值区均集中分布在北京。O_3的浓度峰值时间要晚于NOx2~5 h。O_3在春、夏季呈单峰分布,白天15:00左右出现最大值,在秋、冬季浓度较低,全天波动不大。  相似文献   

20.
试点城市O3浓度特征分析   总被引:8,自引:7,他引:1  
利用2009年O3试点城市的03监测数据,分析了北京、天津、上海、青岛、沈阳和广东的03浓度变化特征,统计了年超标情况,并结合气象要素数据分析了其对03浓度的影响.结果表明,不同城市各点位间03浓度变化趋势基本一致,但因点位类型不同,浓度存在差异;O3浓度呈单峰型日变化,在13:00-15:00出现最大值,6:00-7:00出现最小值;O3超标主要集中在4-8月份,广州和北京超标现象较多;O3浓度受温度、降水、风速和风向等气象要素影响较大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号