首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
The Chesapeake Bay benthic index of biotic integrity (B-IBI) was developed to assess benthic community health and environmental quality in Chesapeake Bay. The B-IBI provides Chesapeake Bay monitoring programs with a uniform tool with which to characterize bay-wide benthic community condition and assess the health of the Bay. A probability-based design permits unbiased annual estimates of areal degradation within the Chesapeake Bay and its tributaries with quantifiable precision. However, of greatest interest to managers is the identification of problem areas most in need of restoration. Here we apply the B-IBI to benthic data collected in the Bay since 1994 to assess benthic community degradation by Chesapeake Bay Program segment and water depth. We used a new B-IBI classification system that improves the reliability of the estimates of degradation. Estimates were produced for 67 Chesapeake Bay Program segments. Greatest degradation was found in areas that are known to experience hypoxia or show toxic contamination, such as the mesohaline portion of the Potomac River, the Patapsco River, and the Maryland mainstem. Logistic regression models revealed increased probability of degraded benthos with depth for the lower Potomac River, Patapsco River, Nanticoke River, lower York River, and the Maryland mainstem. Our assessment of degradation by segment and water depth provided greater resolution of relative condition than previously available, and helped define the extent of degradation in Chesapeake Bay.  相似文献   

2.
Federal and state environmental agencies conduct several programs to characterize the environmental condition of Chesapeake Bay. These programs use different benthic indices and survey designs, and have produced assessments that differ in the estimate of the extent of benthic community degradation in Chesapeake Bay. Provided that the survey designs are unbiased, differences may exist in the ability of these indices to identify environmental degradation. In this study we compared the results of three indices calculated on the same data, and the assessments of two programs: the Chesapeake Bay Program and the Mid-Atlantic Integrated Assessment (MAIA). We examined the level of agreement of index results using site-based measures of agreement, evaluated sampling designs and statistical estimation methods, and tested for significant differences in assessments. Comparison of ratings of individual sites was done within separate categories of water and sediment quality to identify which indices summarize best pollution problems in Chesapeake Bay. The use of different benthic indices by these programs produced assessments that differed significantly in the estimate of degradation. A larger fraction of poor sites was classified as good by the Environmental Monitoring and Assessment Program’s Virginian Province and MAIA benthic indices compared to the Chesapeake Bay benthic index of biotic integrity, although overall classification efficiencies were similar for all indices. Differences in survey design also contributed to differences in assessments. The relative difference between the indices remained the same when they were applied to an independent dataset, suggesting that the indices can be calibrated to produce consistent results.  相似文献   

3.
We examined benthic condition in three small watersheds in the Chesapeake Bay. Characterization of benthic condition was based on the combined measurements of benthic fauna, sediment toxicity, and sediment contaminant loads. Significant differences between watersheds were detected for sediment contaminant concentrations and water quality. The intensity of benthic impairment was greatest in the river surrounded by the most developed watershed. Spatial patterns of benthic condition were detected within all three watersheds. In contrast to current, intense focus on nutrient pollution in the Chesapeake Bay, qualitative comparison of our findings to land-use patterns supports findings of other studies that suggest benthic condition in tributaries of the Chesapeake Bay may more closely relate to urbanization than agricultural land uses.  相似文献   

4.
Estimation of benthic macroinvertebrate populations over large spatial scales is difficult due to the high variability in abundance and the cost of sample processing and taxonomic analysis. To determine a cost-effective, statistically powerful sample design, we conducted an exploratory study of the spatial variation of benthic macroinvertebrates in a 37 km reach of the Upper Mississippi River. We sampled benthos at 36 sites within each of two strata, contiguous backwater and channel border. Three standard ponar (525 cm2) grab samples were obtained at each site ('Original Design'). Analysis of variance and sampling cost of strata-wide estimates for abundance of Oligochaeta, Chironomidae, and total invertebrates showed that only one ponar sample per site ('Reduced Design') yielded essentially the same abundance estimates as the Original Design, while reducing the overall cost by 63%. A posteriori statistical power analysis ( = 0.05, = 0.20) on the Reduced Design estimated that at least 18 sites per stratum were needed to detect differences in mean abundance between contiguous backwater and channel border areas for Oligochaeta, Chironomidae, and total invertebrates. Statistical power was nearly identical for the three taxonomic groups. The abundances of several taxa of concern (e.g., Hexagenia mayflies and Musculium fingernail clams) were too spatially variable to estimate power with our method. Resampling simulations indicated that to achieve adequate sampling precision for Oligochaeta, at least 36 sample sites per stratum would be required, whereas a sampling precision of 0.2 would not be attained with any sample size for Hexagenia in channel border areas, or Chironomidae and Musculium in both strata given the variance structure of the original samples. Community-wide diversity indices (Brillouin and 1-Simpsons) increased as sample area per site increased. The backwater area had higher diversity than the channel border area. The number of sampling sites required to sample benthic macroinvertebrates during our sampling period depended on the study objective and ranged from 18 to more than 40 sites per stratum. No single sampling regime would efficiently and adequately sample all components of the macroinvertebrate community.  相似文献   

5.
Benthic infauna were sampled from 251 Southern California Bight (SCB) mainland shelf sites in the summer of 1994. Sample sites were selected using a stratified random design, with the primary strata being depth zone, geography, and proximity to point and non-point discharges. Benthic infaunal condition was assessed using the Benthic Response Index (BRI), and by comparing dominant taxa and community parameters (e.g., number of taxa) among strata. Ninety-one percent of sediments in the SCB were found to contain healthy benthic communities. Most stations with altered benthos were located near river mouths, in Santa Monica Bay, or on the Palos Verdes Shelf. Deviations at sites with altered benthic communities were mostly limited to minor changes in species composition, rather than to large declines in diversity or abundance.  相似文献   

6.
The goal of this study was to identify the relative toxicity ofambient areas in the Chesapeake Bay watershed by using a suiteof concurrent water column and sediment toxicity tests at seventy-five ambient stations in 20 Chesapeake Bay rivers from1990 through 1999. Spatial and temporal variability was examinedat selected locations throughout the 10 yr study. Inorganicand organic contaminants were evaluated in ambient water andsediment concurrently with water column and sediment tests toassess possible causes of toxicity although absolute causalitycan not be established. Multivariate statistical analysis wasused to develop a multiple endpoint toxicity index (TOX-INDEX) at each station for both water column and sediment toxicity data. Water column tests from the 10 yr testing period showed that49% of the time, some degree of toxicity was reported. The mosttoxic sites based on water column results were located inurbanized areas such as the Anacostia River, Elizabeth River andthe Middle River. Water quality criteria for copper, lead,mercury, nickel and zinc were exceeded at one or more of thesesites. Water column toxicity was also reported in localizedareas of the South and Chester Rivers. Both spatial and temporalvariability was reported from the suite of water column toxicitytests. Some degree of sediment toxicity was reported from 62% of the tests conducted during the ten year period. The ElizabethRiver and Baltimore Harbor stations were reported as the most toxic areas based on sediment results.Sediment toxicity guidelines were exceeded for one or more of thefollowing metals at these two locations: arsenic, cadmium,chromium, copper, lead, nickel and zinc. At the Elizabeth Riverstations nine of sixteen semi-volatile organics and two of sevenpesticides measured exceeded the ER-M values in 1990. Ambientsediment toxicity tests in the Elizabeth River in 1996 showedreduced toxicity. Various semi-volatile organics exceeded the ER-M values at a number of Baltimore Harbor sites; pyrene anddibenzo(a,h)anthracene were particularly high at one of thestations (Northwest Harbor). Localized sediment toxicity was alsoreported in the Chester, James, Magothy, Rappahannock, andPotomac Rivers but the link with contaminants was not determined.Both spatial and temporal variability was less for sedimenttoxicity data when compared with water column toxicity data. Acomparison of water column and sediment toxicity data for thevarious stations over the 10 yr study showed that approximatelyhalf the time agreement occurred (either both suite of testsshowed toxicity or neither suite of tests showed toxicity).  相似文献   

7.
Runoff from impervious land cover has a major impact on headwater tidal creek ecosystems resulting from ever increasing development along the coastline. Tidal creek habitats can serve as "early warning systems" for anthropogenic stressors due to their proximity to the uplands. In this study, the macrobenthic community was sampled along the longitudinal gradient of tidal creeks (i.e., first order, second order, and third order) in North Carolina, South Carolina, and Georgia which varied in their levels of watershed development (salt marsh, forested, suburban, and urban). This study was designed to assess the condition of macrobenthic communities in tidal creek ecosystems under varying levels of anthropogenic stressors and test whether the conclusions of a previous study in South Carolina (Holland et al., J Exp Mar Biol Ecol 298:151-178, 2004) could be generalized to the southeastern USA. Metrics of community-level and species-specific response within tidal creeks draining watersheds of varying degrees of impervious cover suggest the macrobenthic community may be a useful indicator of development in tidal creeks ecosystems. The differences observed when data from all three states were pooled was consistent with previous findings in South Carolina tidal creeks which illustrates that macrobenthic communities in tidal creeks may react to watershed development in similar patterns along the southeastern coast of the USA.  相似文献   

8.
This paper summarizes sampling results from NOAA's National Status and Trends (NS&T) Program for marine environmental quality in Delaware Bay. A stratified-random design was used to determine the spatial extent of sediment contamination and toxicity in Delaware Bay from offshore stations in the coastal zone, the lower estuary, the upper estuary, the fresh/salt mixing zone, and tidal fresh areas. Sediment samples were taken for chemical analyses of major classes of environmental contaminants, a suite of toxicity bioassays, and benthic macrofaunal community assessment to identify patterns of resident species. The tidal-fresh areas and portions of the mixing zone of the study area were heavily contaminated. Contaminant concentrations were frequently above the 90th percentile of EMAP Virginian Province levels. PAHs in the sediment were higher than previously documented, with a major component of PAHs being pyrogenic in origin. Bioassay results were highly variable. Toxicity and contaminant levels were correlated when aggregated into indices, but were only marginally correlated with benthic community impacts. High and low abundance stations were found in all zones. Most of the tidal fresh stations were dominated by pollution tolerant species. Species diversity and abundance were generally lowest in the fresh/salt mixing zone.  相似文献   

9.
A study was conducted in November 1999 to assess sediment quality and condition of benthic fauna in the Neuse River Estuary (NRE), North Carolina, USA, following the passage of three Atlantic hurricanes during the two months prior. Samples for analysis of macroinfauna (>0.5 mm sieve size), chemical contamination of sediments, and other abiotic environmental variables (salinity, dissolved oxygen, pH, depth, sediment granulometry) were collected at 20 sites from the mouth of the Neuse River at Pamlico Sound to approximately 90 km upstream. Results were compared to those obtained from the same area in July 1998 using similar protocols. Depressed salinity, caused by extreme rainfall and associated high freshwater flow, persisted throughout much of the estuary, which had experienced periods of water-column stratification and hypoxia of underlying waters. Fifteen of the 20 sites, representing 299 km2 (76% of the survey area), also showed signs of benthic stress based on a multi-metric benthic index of biotic integrity (B-IBI). Benthic impacts included reductions in the abundance, diversity, and numbers of species and shifts in taxonomic composition, with a notable increase in dominance of the opportunistic polychaete Mediomastus ambiseta as other former dominant species declined. There was no significant increase in the extent of chemical contamination compared to pre-hurricane conditions. Storm-related reductions in dissoved oxygen and salinity were the more likely causes of the observed benthic impacts, though it was not possible, based on these results, to separate storm effects from seasonal changes in the benthos and annual episodes of summer anoxia and hypoxia.  相似文献   

10.
The spatial and temporal distribution of macrobenthic assemblages in the San Francisco Estuary and Sacramento–San Joaquin River Delta were identified using hierarchical cluster analysis of 501 samples collected between 1994 and 2008. Five benthic assemblages were identified that were distributed primarily along the salinity gradient: (1) a polyhaline assemblage that inhabits the Central Bay, (2) a mesohaline assemblage that inhabits South Bay and San Pablo Bay, (3) a low-diversity oligohaline assemblage primarily in Suisun Bay, (4) a low-diversity sand assemblage that occurs at various locations throughout the Estuary, and (5) a tidal freshwater assemblage in the Delta. Most sites were classified within the same assemblage in different seasons and years, but a few sites switched assemblage designations in response to seasonal changes in salinity from freshwater inflows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号