首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
Toxicity monitoring of field water samples was performed using a novel multi-channel two-stage mini-bioreactor system and genetically engineered bioluminescent bacteria for the continuous monitoring and classification of the toxicity present in the samples. The toxicity of various samples spiked with known endocrine disrupting chemicals and phenol was also investigated for system characterization. The field samples used in this study were obtained from two different sites on a monthly basis--from a drinking water treatment plant, referred to as site N, and from a stream near a dam which is currently being constructed, referred to as site T. These samples were either pumped or injected into the second mini-bioreactors to initiate the toxicity test. Most of the samples did not show any specific toxicity. However, one sample showed to have, based upon the detection results, and was deemed toxic. The samples spiked with phenol showed possible responses in the DPD2540 and TV1061 channels, indicating the occurrence of both membrane and protein damage due to phenol. In the tests using an endocrine disrupting chemical, bisphenol A, DNA damage was detected in the DPD2794 channel with a concentration of 2 ppm. Finally, a simple but novel early warning protocol that can be used in a drinking water reservoir and a suspected place where effluents of toxic materials enter the water sourse was suggested with a schematic diagram. In conclusion, this system showed good feasibility for use as a toxicity monitoring system in the field and as an early warning system, indicating if effluents are toxic.  相似文献   

2.
Pesticide applications to agricultural lands in California, USA, are reported to a central data base, while data on water and sediment quality are collected by a number of monitoring programs. Data from both sources are geo-referenced, allowing spatial analysis of relationships between pesticide application rates and the chemical and biological condition of water bodies. This study collected data from 12 watersheds, selected to represent a range of pesticide usage. Water quality parameters were measured during six surveys of stream sites receiving runoff from the selected watershed areas. This study had three objectives: to evaluate the usefulness of pesticide application data in selecting regional monitoring sites, to provide information for generating and testing hypotheses about pesticide fate and effects, and to determine whether in-stream nitrate concentration was a useful surrogate indicator for regional monitoring of toxic substances. Significant correlations were observed between pesticide application rates and in-stream pesticide concentrations (p < 0.05) and toxicity (p < 0.10). In-stream nitrate concentrations were not significantly correlated with either the amount of pesticides applied, in-stream pesticide concentrations, or in-stream toxicity (all p > 0.30). Neither total watershed area nor the area in which pesticide usage was reported correlated significantly with the amount of pesticides applied, in-stream pesticide concentrations, or in-stream toxicity (all p > 0.14). In-stream pesticide concentrations and effects were more closely related to the intensity of pesticide use than to the area under cultivation.  相似文献   

3.
A bioluminescent rapid method was developed to estimate the integral toxicity of natural and wastewater. This method is based on registering the effect of the polluted water sample on the parameters of the bioluminescent reaction catalyzed by the multi-component reagent containing NADH:FMN oxidoreductase, luciferase, and their substrates co-immobilized in a starch carrier. Several ways to increase the method's sensitivity to toxic substances were suggested; conditions were selected to make it possible to determine, with maximum efficiency, the content of toxic substances corresponding to a certain maximum permissible concentration. The sensitivity of soluble and immobilized coupled enzymatic systems to a series of organic pollutants (phenols, quinones, and salts of heavy metals) was compared. It was shown that the reagent is the most sensitive to the effect of phenols and quinones. The method was tested during analysis of the wastewater from a pulp and paper plant and can be used for biotesting in both laboratory and field conditions.  相似文献   

4.
选取不同类型的环境和污染源水样开展了发光细菌毒性测试,针对不同环境管理目标,探讨了急性毒性定量表征方式。发光细菌急性毒性测试在环境应急监测、水源早期生物预警中,采用绘制毒性预警基线图的方式比较可行。在污染源监督监测中,对于发光抑制率低于60%、无法求出EC50的样品,采用等效毒性参照物的质量浓度表征废水的毒性;对于发光抑制率高于60%,采用稀释因子表示样品的毒性更直观可靠。  相似文献   

5.
This study investigates the impact of wastewater treatment plant (WWTP) effluent on the toxicity of the recipient water body and the effectiveness of the disinfection treatment applied (sodium hypochloride) to assure the compliance of both microbiological and toxicological emission limits. No toxicity was found in the majority of samples collected from the recipient river, upstream and downstream of the WWTP, using three different toxicity tests (Vibrio fischeri, Daphnia magna, and Pseudokirchneriella subcapitata). Only three samples presented toxic unit (TU) values with V. fischeri, and one presented TU with P. subcapitata. The influent toxicity ranged from slightly toxic to toxic (TU = 0.68–4.47) with V. fischeri, while only three samples presented TU values with the other tests. No toxicity was found in the absence of chlorination, while the mean toxicity was 3.42 ± 4.12 TU with chlorination in the effluent. Although no toxicity or very slight toxicity was found in the receiving water, its residual toxicity was higher than the US EPA Quality Standard in two samples. Escherichia coli concentration had a lower mean value in the chlorinated effluent: 13,993 ± 12,037 CFU/100 mL vs. 62,857 ± 80,526 CFU/100 mL for the not chlorinated effluent. This difference was shown to be significant (p < 0.05). E. coli in ten chlorinated samples was higher than the limit established by European and Italian Legislation. The mean highest trihalomethanes (THMs) value was found in the influent samples (2.79 ± 1.40 μg/L), while the mean highest disinfection by-products (DBPs) was found in the effluent samples (1.85 ± 2.25 μg/L). Significant correlations were found between toxicity, sodium hypochlorite, THMs, DBPs, E. coli, and residual chlorine. In conclusion, this study highlighted that the disinfection of wastewater effluents with sodium hypochlorite determines the increase of the toxicity, and sometimes is not enough to control the E. coli contamination.  相似文献   

6.
化工园区污水特征分析及生物毒性研究   总被引:3,自引:0,他引:3  
对天津市某化工园区9个主要污染企业及总排放口的废水进行监测分析,测定了12项水质常规指标和8项重金属指标,采用主成分分析法和生物毒性测试对化工区废水的水质进行了综合评价。结果表明,水质指标中大部分常规项目(如COD、氨氮和重金属含量)在多数企业污水中都符合排放标准,总氮、总磷污染较重,其中磷的污染最严重,最高超标23.83倍;影响污水性质的第一主成分为氯化物、电导率、全盐量和Cr,第二主成分为溶解氧、悬浮物、氨氮、总氮、总磷和As;废水具有一定的生物毒性,且不同化工企业之间毒性差异较大。水质化学测定的结果和生物毒性程度有一定相关性,但也存在差异,应该结合两者综合评价水质污染特征。  相似文献   

7.
对环境监测及相关实验室在实验分析过程中造成水环境二次污染问题进行了论述和分析。在对实验室产生污染物以及含剧毒试剂污染物排放造成环境危害量化分析的同时,详细介绍了监测分析和在化学实验中,从源头上减少及有效控制二次污染的方法和途径。根据中国目前对化学实验室排污管理的现状和分析实验室工作中对污染控制的实际情况,通过与国际先进国家在化学分析实验室污染物排放管理上的对比,阐述了国内在实验室管理和污染物处理方面存在的问题和差距。从法律、法规建设和管理机制上,提出了从根本上减少和有效控制水环境二次污染的相关建议。  相似文献   

8.
集中式饮用水水源地水质预警指标体系构建   总被引:3,自引:2,他引:1  
饮用水水源地水质预警是建立健全饮用水安全保障体系的关键环节,构建水源地水质预警指标体系是水源地监控预警工作的重要基础。系统分析了常规水质在线、生物毒性在线、卫星遥感、人工巡视等水质预警监测技术手段,并分析比较了各方法的优缺点。以此为基础,遵循水源地预警指标体系构建原则与实际需求,统筹兼顾,提出了建立以常规理化-生物毒性在线监测相结合,遥感监测与人工巡查相统筹的一体化水源地水质预警指标体系,为水源地水质预警监控工作提供合理的、科学的技术支撑。  相似文献   

9.
为了研究生物急性监测方法对监测典型化工污水处理厂废水的适用性,选择2家常州市典型的化工园区污水处理厂("常A"和"常B"),进行了发光细菌、藻类、大型溞和斑马鱼卵4种不同层次受试生物的急性毒性检测。研究表明,发光细菌急性毒性、藻类叶绿素荧光毒性在2个污水处理厂中均被检测到,发光细菌急性毒性通常进水大于出水,但在投放大量氧化消毒剂时,出水表现出剧毒。藻类叶绿素荧光毒性最高值出现在常B进水中。大型溞和斑马鱼卵急性毒性仅在常B进出水样中有检出,受纳河道下游水样虽未表现出急性毒性,但可观察到斑马鱼卵各类发育畸形。4种生物急性毒性检测方法中,发光细菌适用范围最广,藻类、大型溞和斑马鱼卵急性毒性方法可根据监测目的和工业园区特点相应选择。实验结论可为化工污水处理厂尾水排放过程中生物毒性监测的常态化提供方法选择,为管理部门制定排放标准提供依据。  相似文献   

10.
水质监测是开展水生态环境评价、监管的基础性工作之一。随着对水生态环境保护与管理要求的提高,人工水质监测与自动水质监测相结合的模式应用越来越普遍。以船舶为载体的水质自动监测系统开展巡测,可实现高密度样品采集、检测及信息的实时传输,在长江泸州以下干流水域的实践中取得了良好效果。系统的应用可弥补常规监测断面间距过大、人工监测频次低、固定站房式水质自动监测站近岸取样等不足,对人工监测和自动监测形成有效补充;船载水质自动监测系统能够实现定点、定深、定时监测,可以在河流污染带监测、入河排污行为的监管以及偷排行为的溯源、水污染应急动态监测等工作中发挥有效作用,既可应用于长江干流等河道较宽且水质可能存在岸别差异的河流,也可应用于滇池、太湖、丹江口等大型湖泊、水库水生态环境监管。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号