首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
通过对北京某垃圾填埋场大气中不同区域挥发性有机污染物(VOCs)的定性和定量分析,研究了其中部分VOCs的季节性特点和浓度分布规律。结果表明,夏、冬2季分别检测出98种和86种化合物,有12种美国环保署(USEPA)优先控制污染物在夏、冬季样品中均有检出。夏季样品中VOCs的浓度大多比冬季高,有的甚至高1个数量级以上。采用不同卫生填埋技术的各代表性区域的臭气浓度也呈现出规律性变化。为加强科学管理,减少扩散,降低风险提供参考。  相似文献   

2.
济南市环境空气VOCs污染特征及来源识别   总被引:4,自引:4,他引:0  
对济南市2010年6月至2012年5月环境空气中56种挥发性有机污染物(VOCs)进行在线气相色谱监测,研究其污染特征并识别其主要来源。结果表明,该期间总挥发性有机化合物(TVOCs)变化规律基本一致,其平均浓度水平夏季冬季秋季春季;TVOCs浓度的日变化趋势呈双峰分布,与早晚交通高峰相吻合;济南市城区环境空气中VOCs的主要物种是C3~C5的烷烃、丙烯、顺-2-丁烯、甲苯和间、对二甲苯等;不同季节环境空气中VOCs的主要物种基本一致,夏季烯烃所占比重高于其他季节;烷烃、烯烃与TVOCs的浓度日变化趋势相似,呈明显的双峰状,而芳香烃浓度日变化规律双峰特征不明显。济南市城区VOCs的主要来源为汽车尾气、工业源、燃烧源。  相似文献   

3.
采用自制垃圾填埋甲烷测量装置对衡阳某垃圾处理站临时堆放的处于发酵期的垃圾开展浓度测定试验,探究垃圾填埋气中甲烷在短期内产生的时空规律。结果表明:填埋场中甲烷浓度存在明显的气体分层现象,其浓度主要与纵向填埋深度呈正相关,与距填埋场边界的水平距离呈负相关;填埋初期,距离地表越近,同一水平方向甲烷浓度在不同区域变化较大,随着填埋时间的增长其浓度变化趋于稳定;填埋场内部温度与垃圾埋深和外界温度成线性相关,并且与垃圾埋深成反比,与外界温度成正比。  相似文献   

4.
利用南京市2022年挥发性有机物(VOCs)在线监测数据,对VOCs污染特征、来源及对臭氧的影响进行了分析研究。结果表明:2022年南京市φ(TVOCs)年均值为25.1×10-9,其中各组分占比为烷烃>含氧挥发性有机物(OVOCs)>氯代烃>烯烃>芳香烃>炔烃。TVOCs及烷烃、烯烃和芳香烃的体积分数季节变化表现为冬季>秋季>春季>夏季,φ(OVOCs)季节变化表现为夏季>秋季>春季>冬季。烷烃、烯烃和炔烃日变化呈“双峰型”特征,芳香烃和氯代烃为“单峰型”。臭氧生成潜势(OFP)贡献总体表现为OVOCs>烯烃>芳香烃>烷烃>氯代烃>炔烃,但冬季烯烃的贡献率最高。南京市臭氧生成的关键VOCs物种为乙醛、乙烯、丙烯、间/对-二甲苯和甲苯。正交矩阵因子分解结果显示,机动车尾气、生物质燃烧和工业生产是南京VOCs的主要来源;对南京臭氧生成贡献最大的VOCs来源为溶剂涂料使用和石化行业。  相似文献   

5.
北京某垃圾填埋区空气细菌浓度及粒径分布特征   总被引:3,自引:0,他引:3  
以北京市某垃圾填埋区中作业区和覆盖区的空气细菌为主要研究对象,研究四个季节空气细菌浓度及粒径分布特征,得出了以下结论:垃圾填埋区作业区空气细菌浓度四季变化特征较覆盖区显著,且空气细菌浓度高于覆盖区。垃圾填埋区作业区和覆盖区四季的空气细菌粒子主要分布在前4级中,且在第Ⅵ级(<1.0μm)中分布比例最小,但分布规律不完全相同。秋季作业区最易感染人体的空气细菌浓度最高。垃圾填埋区作业区和覆盖区空气细菌中值直径最小值均出现在夏季,最大值均出现在冬季。  相似文献   

6.
徐州市生活垃圾填埋场地下水典型金属污染物研究   总被引:1,自引:0,他引:1       下载免费PDF全文
在对徐州地区生活垃圾填埋场调查分析的基础上,根据填埋特征和地质状况选取4座典型填埋场为调查对象,采用ICP-MS对垃圾渗滤液及地下水中26种重金属进行监测分析。结果表明,在4个垃圾填埋场地下水及渗滤液中ρ(Sr)均相对较高(700μg/L);地下水中金属元素均正在以Ca,Mg为主向Na,Mg为主转化;地下水中Al,B质量浓度大小顺序为Y场(雁群)S场(睢宁)C场(翠屏山)P场(邳州);4个垃圾填埋场共同典型重金属污染物为Mn,Fe,Zn,Ba;除上述污染物外,Y场地下水潜在典型重金属污染物为Pb和Mo;S场为Mo和As;C场为Tl和Co;P场为As。  相似文献   

7.
2018年9月对苏州吴江区某生活垃圾受控(简易)填埋场整治工程进行土壤及地下水相关指标进行现场采样和实验室分析。通过采样分析发现:该生活垃圾填埋场周边环境土壤中无机物指标铬、铅、镉、砷、汞、铜、锌、镍含量均达到相关标准,土壤中53种挥发性有机物均未检出。地下水中氨氮、耗氧量、1,2-二氯乙烷含量均不符合标准要求。超标的主要原因是该生活垃圾简易填埋场建设期按未规范采取防渗措施,致使渗滤液向场地周边渗漏,污染地下水质。  相似文献   

8.
生活垃圾卫生填埋场的选址涉及多方面因素,该文通过对丽江市生活垃圾填埋的历史与现状、填埋量、填埋场分布等状况的分析,用层次分析法对正在使用填埋场进行适宜性评价,分析了导致污染的主要环境地质问题,对已污染填埋场的治理和未来填埋场的选址具有指导意义.  相似文献   

9.
石家庄市冬季大气中VOCs污染特征分析   总被引:5,自引:3,他引:2  
为弄清石家庄市冬季大气中VOCs的污染特征,采用美国环保局TO-15方法对石家庄市冬季大气中VOCs组成进行了定性和定量分析。在此基础上,进行了VOCs的月度变化分析、春节期间的变化分析,并进行了VOCs与空气质量指数AQI、PM2.5等之间的相关性分析;根据VOCs组成及变化情况和相关性,分析了其可能的来源。结果表明,石家庄市冬季大气中VOCs的质量浓度为145.7~1 410.7μg/m3,VOCs组分主要有丙酮、二氯甲烷、苯、乙酸乙酯、甲苯、1,2-二氯丙烷、三氯甲烷。春节期间,大气中VOCs的浓度有大幅的下降,比日常均值下降了40.9%。AQI较高时,大气中VOCs浓度有所升高。石家庄市冬季大气中丙酮、二氯甲烷、乙酸乙酯等主要来源于医药化工生产活动,苯、甲苯主要来源于煤燃烧。  相似文献   

10.
基于2016—2022年南京市大气挥发性有机物(VOCs)自动监测数据,分析VOCs污染特征及其臭氧生成潜势(OFP)。结果表明:2016—2022年南京市大气VOCs及其组分体积分数均显著下降,TVOCs 7年均值为21.7×10-9,各组分占比从大到小依次为烷烃>烯烃>芳香烃>炔烃;TVOCs及烷烃、烯烃、芳香烃季节变化一致,均为冬季>秋季>春季>夏季,炔烃为冬季>春季>秋季>夏季;TVOCs及烷烃、烯烃、炔烃月变化整体呈“V”字型特征,芳香烃近似为“W”型;除炔烃外,小时体积分数日变化基本呈“单峰型”特征。2016—2022年OFP年际变化呈显著下降趋势,7年均值为132.1 μg/m3;OFP贡献较大的组分为烯烃(39.1%)和芳香烃(38.1%),臭氧生成的VOCs关键物种为乙烯、间/对二甲苯、甲苯、丙烯和异戊二烯,控制烯烃和芳香烃排放有利于南京市的臭氧污染防治。  相似文献   

11.
The compositions, spatial distributions, seasonal variations and ozone formation potential (OFP) of volatile organic compounds (VOCs) were investigated in the atmosphere of Haicang District, Xiamen City, Southeast China. Twenty-four types of VOCs were measured in this study, and ethanol, methylene chloride, toluene, ethyl acetate and isopropyl alcohol were the abundant species based on concentration rank. The concentrations of total VOCs (TVOCs) in industrial areas were higher than those in residential and administrative areas and background site. For industrial areas, the TVOCs concentrations in summer were higher than those in winter, which might result from higher emissions from industrial activities because of stronger evaporation in summer. In contrast, non-industrial areas showed higher concentrations in winter due to the unfavorable meteorological conditions. The spatial distribution of BTEX (benzene, toluene, ethylbenzene and xylene) followed the order of industrial areas > residential and administrative areas > background site, and the concentrations in summer were lower than those in winter for most sites. The high ratios (8.9-14.0) of T/B in this study indicated that industrial emissions were the main sources in this district. X/B ratios were used to assess the ages of air parcels and provided evidence of the transport of air parcels among these sites. Total OFP (TOFP) showed the trend of increase with the increase of TVOCs, and toluene was found as the major contributor to TOFP.  相似文献   

12.
A canister-based 1 week sampling method using a mechanical flow controller and a 6 L fused-silica-lined canister was evaluated for the long-term measurement of 47 VOCs in ambient air at pptv (volume/volume) to ppbv levels by use of a three-stage preconcentation method followed by GC-MS analysis. The GC conditions were initially optimized for complete separations of several pptv-level VOCs (e.g. vinyl chloride, 1,3-butadiene, acrylonitrile, 1,2-dichloroethane and chloroform) in ambient air because the selected ions are easily interfered with by coexisting C4-, C5-hydrocarbons and analytes presented at ppbv levels. Thirty-four VOCs determined by the 1 week and 24 h sampling method in December 16-22 (2002) had concentrations of 6.0-15000 pptv per compound. Concentrations of 28 VOCs (including polar VOCs (e.g. methyl isobutyl ketone and butyl acetate)) obtained by the method were approximately equal to the mean values calculated from 24 h sampling (< +/- 10% deviation). Six VOCs that had low concentrations of 6.0-43 pptv showed more than +/- 10% deviation. Thirteen VOCs were not detected during the entire sampling period. The effect of relative humidity or ozone for the specific VOCs (e.g. MIBK, butyl acetate, vinyl chloride, 1,3-butadiene and styrene) was negligible.  相似文献   

13.
2015年8月22日至9月26日利用在线GC-MS/FID和离线Canister-GCMS/FID采样并分析了重庆城区7个监测点位的96种VOCs,结果表明,城区总挥发性有机化合物平均体积分数为42.43×10-9,且空间分布特征为"中心城区高,周边低"。重庆本地高乙烷、高乙烯和高乙炔浓度呈区域污染现象,且城市监测点位主要受交通源、工业排放和溶剂挥发的影响,缙云山站则主要以生物源排放为主。重庆市城区气团的OH自由基反应速率平均值为8.86×10-12cm3/(mol·s),最大反应增量活性平均值为4.08 mol/mol,与乙烯相当,说明本地大气化学反应活性较强。重庆城区对OH自由基损耗速率贡献最大的组分是烯/炔烃(35%),对臭氧生成潜势贡献最大的组分是芳香烃(39%)。乙醛、乙烯和甲苯等物质是VOCs的关键活性组分。  相似文献   

14.
南京市环境空气中挥发性有机物的组成与特点   总被引:10,自引:1,他引:10  
参照美国EPATO17的方法研究南京市不同功能区(交通区、商业旅游区、居住区、工业区和清洁对照点)环境空气中挥发性有机物(VOCs)在一年四季中的组成及浓度水平。共检出189种挥发性有机物,并随气温下降而减少;苯系物稳定存在于各功能区,浓度秋季最高。交通区污染最严重。  相似文献   

15.
运用大气挥发性有机物(VOCs)快速在线连续自动监测系统,于2018年7月对南通市区环境空气中VOCs进行观测,分析VOCs的浓度状况、组成特征、对臭氧生成潜势的贡献及主要来源。结果表明:观测期间共检出100种VOCs,总挥发性有机物(TVOCs)的平均体积分数为(38. 18±23. 63)×10^-9,各物种体积分数从大到小顺序依次为烷烃>含氧有机物>芳香烃>卤代烃>烯、炔烃;芳烃和烯烃是最主要的活性物种,间/对二甲苯、甲苯、邻二甲苯等是VOCs的关键活性组分;利用PMF模型解析得到VOCs的主要污染来源是工业排放与溶剂使用、机动车尾气排放、燃料挥发排放和生物源排放。  相似文献   

16.
选取武夷山、庞泉沟和长岛3个具有代表性的空气背景站点及其周边城市站点,分析研究夏季环境空气中挥发性有机污染物(VOCs)的特征。结果表明,庞泉沟、武夷山、长岛背景站点的总挥发性有机物(TVOCs)平均浓度分别为(24.71±7.89)×10-9、(7.94±5.82)×10-9、(11.98±5.34)×10-9,分别比对应的城市站点低42%、43%、11%。背景站点TVOCs中的烷烃占比为67%~72%,明显高于城市站点;背景站点与城市站点TVOCs中的烯烃和芳香烃占比无显著差异;但背景站点炔烃占比(2%~3%)明显低于城市地区(10%~24%)。背景站点异戊二烯浓度在09:00—15:00出现峰值,且TVOCs浓度变化趋势与异戊二烯浓度变化趋势关联性较强,说明背景站点受自然源影响较大。臭氧生成潜势(OFP)分析结果表明,烯烃及芳香烃对背景地区与城市地区臭氧生成有较大影响,城市地区总OFP远大于背景地区,乙烯、甲苯等对城市地区OFP的贡献较大,异戊二烯对背景地区OFP的贡献较大。  相似文献   

17.
In this study, concentrations of major aromatic VOCs were determined from landfill gas (LFG) at a total of five municipal landfill sites in Korea including Nan Ji (NJ), Woon Jung (WJ), Sam Poong (SP), Hoei Chun (HC), and No Hyung (NH). The concentration levels of those VOC were found to be significantly different, mainly as a function of such a parameter as landfill aging. The VOC concentrations measured from the unclosed landfill sites (e.g., WJ) were characterized by exceedingly high values above a few tens of ppm. However, the results of the abandoned site (e.g., SP) were about three orders of magnitude lower than the others so as to merely exceed the typical ambient concentration levels. It was most striking to find a systematic dominance of toluene over other aromatic VOC under most circumstances. The LFG flux values of all aromatic VOC and the four specific major ones (termed as BTEX: benzene, toluene, ethylbenzene, and xylene) were also computed for each vent pipe from all study sites using their concentrations and the concurrently determined environmental parameters. The results, if calculated in terms of the average BTEX quantity emitted per vent pipe, showed that the magnitude of their emissions can vary substantially, with the values ranging from 0.05 (SP) to 49.2 kg yr−1 (WJ in wintertime). The LFG flux values of aromatic VOC, when compared to the contribution of non-methane hydrocarbons (NMHC), were able to explain a constant, but minor, proportion of the LFG carbon budget.  相似文献   

18.
基于2019年沈阳市4个不同功能区挥发性有机物(VOCs)小时分辨率的在线监测数据,分析了环境空气中VOCs的污染特征及来源。结果表明,观测期间沈阳市环境空气中VOCs日平均体积分数为(31.5±13.3)×10~(-9),4个功能区VOCs体积分数均呈现出冬季明显大于夏季的特征;工业区环境空气中VOCs体积分数明显高于其他功能区。商业交通居民混合区、文化居民混合区、郊区VOCs体积分数呈现明显双峰结构,工业区双峰结构不明显。工业区VOCs以新鲜排放为主,而其他3个区域为老化气团的传输。工业区春、夏季环境空气中VOCs来源包括燃料挥发源(26.90%)、溶剂与涂料源(17.69%)、燃烧源(16.40%)、化工源(15.69%)、交通源(7.57%)和炼油炼焦源(4.15%)。秋、冬季VOCs的来源包括燃烧源(30.77%)、溶剂与涂料源(20.26%)、燃料挥发源(18.79%)、化工源(11.54%)、炼油炼焦源(9.34%)和交通源(5.51%)。  相似文献   

19.
Automobile emissions have created a major hydrocarbon pollution problem in the ambient air of Taiwan. The aim of this study was to determine the volatile organic compounds (VOCs) in the ambient air of Kaohsiung, Taiwan. The spatial distribution, temporal variation, and correlations of VOCs at three study sites, selected based on traffic densities and distances from a freeway, were discussed. Sixty-four hydrocarbons were identified in the ambient air. Among all of the VOC species, acetone, aromatic and aliphatic compounds constituted the major constituents. Higher concentrations of VOCs existed further away from major arteries as compared to those found near the freeway. Therefore, the distance from the freeway may not be a sufficient index for reflecting actual air quality in the study area. Weather conditions, wind speed and direction did not affect the distribution of VOC concentrations in the three study sites. Other factors, such as the height and density of buildings, traffic conditions or commercial activities, might affect the distribution of VOCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号