首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Assessment of levels of pesticide residues in vegetables was carried out in some villages in the Western Usambara and Uluguru Mountains of Tanzania where varieties of vegetables are grown. Tomatoes and cabbages were the most popular enterprise grown all year round and therefore were selected as the model crops for this study. Analysis of the cleaned sample extracts on a gas chromatography with electron capture detector (GC-ECD) and confirmation on the Gas chromatography–mass spectrometry (GC-MS) revealed dominance of organochlorine pesticides. Organophosphorous pesticides (parathion and marathion) were only detected in some samples, however, in most cases with higher concentrations compared to organochlorine pesticides. Levels of pesticide residues detected in vegetables were up to: parathion 5.07 μg/Kg, marathion 3.73 μg/Kg, α-endosulfan 0.32 μg/Kg, β-endosulfan 0.53 μg/Kg, dieldrin 1.36 μg/Kg, γ-HCH 0.25 μg/Kg, α-HCH 0.09 μg/Kg, and p, p′-DDT 0.64 μg/Kg. These results clearly show that vegetables are contaminated with different pesticide residues. However, the total levels of pesticide residues in both tomatoes and cabbages are lower than their respective codex alimentarius maximum residue levels (MRLs). This means that the vegetables produced in the area are suitable for human consumption.  相似文献   

2.
In this study, 226 samples of seven types of domestic vegetables collected from several vegetable-growing regions in Hebei Province of China were tested for the presence of 38 different agricultural pesticides using a gas chromatograph equipped with electron capture and nitrogen phosphorus detectors. The aim of this study was to investigate the distribution of pesticides in main vegetables from Hebei Province. Results showed that, in 65.93 % of the samples, no residues were found, 31.42 % of the samples contained pesticide residues at or below the maximum residue levels (MRLs), and 2.65 % of the samples contained pesticide residues above MRL. The most frequently detected pesticides were acephate (31), followed by cyhalothrin (15), bifenthrin (8), omethoate (6), isazophos (6), dimethoate (5), chlorpyrifos (2), and malathion (1). Some (1.33 %) of the samples contained multiple residues. The results provide useful information on the current contamination status of a key agricultural area in North China, and points to the continuous monitoring and strict regulation of pesticide use on vegetables are necessary.  相似文献   

3.
The integrated pest management (IPM) modules of pesticide schedule on Basmati rice were validated at field experiments conducted in Northern India for consecutive 3 years (2005–2008). The pesticide residues were found below the detectable limit (<0.01–0.001 mg/kg) in soil and irrigation water samples of Kaithal region. In Dehra Dun region of Uttrakhand, the residues of carbendazim in rice grains and soil were detected below <0.01 mg/kg level. In second year experiments (2006–2007), only four non-IPM soil samples indicated the presence of chlorpyrifos and endosulfan in the range of ND <0.001 to 0.07 mg/kg, out of 45 samples analyzed. Carbendazim applied as seed treatment at Dehradun and Kaithal field trials was found below detectable limit in both IPM and non-IPM rice grains (<0.01 mg/kg) and irrigation water (0.01 μl/ml). Chlorpyrifos was detected in five water samples from Kaithal and one from Pant Nagar in the range of 0.003–0.006 μl/L, α- and β-isomer of endosulfan in the range of 0.005–0.03, and 0.005–0.02 μl/ml, respectively, in one sample from Pant Nagar and two from Kaithal, out of a total of 22 samples. In the region of Uttrakhand and Uttar Pradesh during 2007–2008, four non-IPM samples of soil indicated trace levels of endosulfan, out of 16 samples analyzed. The residues were detected below detection limit for carbendazim (<0.01 mg/kg) in soil samples of Dehradun IPM fields and for endosulfan and carbendazim (0.001–0.01 μl/L) in water samples each from IPM and non-IPM fields of Uttar Pradesh. The results of 3-year trials of IPM module indicated basmati rice as safe and economical with pesticide residue-free rice grains.  相似文献   

4.
The aim of this study was to detect the presence and determine the residue levels of DDT, lindane, endrin and polychlorinated biphenyls (PCBs) in the liver of wild boars from the area of West Pomerania, NW Poland; to determine the activity of glutathione S-transferase (GST) as a biomarker of biological response and to assess the toxicological risk for consumers of the wild boar offal. The presence of pesticide residues and PCBs was found in all examined liver samples. The highest concentration was observed for endrin, and then, the descending order was PCBs >DDTs >lindane >dl-PCBs. The mean hepatic concentrations of endrin, PCBs, DDTs and lindane were 117.28, 78.59, 67.95 and 7.24 ng/g lipid weight, respectively. Among the dioxin-like PCB congeners, 118 and 156 were dominant in liver samples. The mean toxic equivalent (TEQ) level calculated for dl-PCBs was 2.10?±?1.11 pg WHO-PCB-TEQ/g. There was a statistically significant (p?<?0.05) negative correlation between the concentration of lindane, DDTs and PCBs (as a sum of indicator congeners) in the liver and in the activity of GST. However, GST activities showed no significant correlation with any of the dl-PCBs. In five boar liver samples, the levels of certain organochlorine compounds exceeded the maximum residue levels (MRLs). In one sample, the MRLs were exceeded simultaneously for PCBs, endrin and DDTs and in another one—for endrin and DDTs. In the remaining three samples, only PCB levels were exceeded.  相似文献   

5.
In this study, 24 organochlorine pesticide residues in 109 different honey samples collected from stores and open markets in Konya, Turkey were analyzed by gas chromatography-electron capture detection. Aldrin, cis-chlordane, trans-chlordane, oxy-chlordane, 2,4 -DDE, and 4,4 -DDE were found in all honey samples. The mean value was 0.0540 μg g???1 for oxy-chlordane. In the 55 samples of 109, levels of organochlorine pesticide residues of oxy-chlordane were determined as higher than those of Turkish Alimentarius Codex maximum residual limits (MRLs). Other organochlorine pesticide residues also exceeded MRLs except for cis-heptachlor epoxide and α-hexachlorocyclohexane. Since all of the honey samples are found contaminated and most of these samples exceeded MRLs, a control of organochlorine pesticide residues in honey is necessary for consumer health.  相似文献   

6.
调查了深圳市10条主要河流农药类环境激素的污染现状。结果表明,深圳市各河流均受到农药类环境激素的污染,共有15种农药类环境激素被检出,质量浓度为未检出-4.8μg/L。并推荐深圳市河流中优先控制的农药类环境激素为:六六六、α-氯丹、硫丹I、环氧七氯、六氯苯、氟乐灵、联苯菊酯、二硫代农药。  相似文献   

7.
In the present study we quantified the residues of organophosphorus (e.g. ethion and chlorpyrifos), organochlorine (e.g. heptachlor, dicofol, alpha-endosulfan, beta-endosulfan, endosulfan sulfate) and synthetic pyrethroid (e.g. cypermethrin and deltamethrin) pesticides in made tea, fresh tea leaves, soils and water bodies from selected tea gardens in the Dooars and Hill regions of West Bengal, India during April and November, 2006. The organophosphorus (OP) pesticide residues were detected in 100% substrate samples of made tea, fresh tea leaves and soil in the Dooars region. In the Hill region, 20% to 40% of the substrate samples contained residues of organophosphorus (OP) pesticides. The organochlorine (OC) pesticide residues were detected in 33% to 100% of the substrate samples, excluding the water bodies in the Dooars region and 0% to 40% in the Hill region. The estimated mean totals of studied pesticides were higher in fresh tea leaves than in made tea and soils. The synthetic pyrethroid (SP) pesticide residues could not be detected in the soils of both the regions and in the water bodies of the Dooars. Sixteen percent and 20% of the made tea samples exceeded the MRL level of chlorpyrifos in Dooars and Hill regions respectively. The residues of heptachlor exceeded the MRL in 33% (April) and 100% (November) in the Dooars and 40% (April) and 20% (November) in the Hill region. Based on the study it was revealed that the residues of banned items like heptachlor and chlorpyrifos in made tea may pose health hazards to the consumers.  相似文献   

8.
Two multiresidue methods were developed to determine pesticides in air collected in California. Pesticides were trapped using XAD-4 resin and extracted with ethyl acetate. Based on an analytical method from the University of California Davis Trace Analytical Laboratory, pesticides were detected by analyzing the extract by gas chromatography–mass spectrometry (GC-MS) to determine chlorothalonil, chlorthal-dimethyl, cycloate, dicloran, dicofol, EPTC, ethalfluralin, iprodione, mefenoxam, metolachlor, PCNB, permethrin, pronamide, simazine, trifluralin, and vinclozolin. A GC with a flame photometric detector was used to determine chlorpyrifos, chlorpyrifos oxon, diazinon, diazinon oxon, dimethoate, dimethoate oxon, fonophos, fonophos oxon, malathion, malathion oxon, naled, and oxydemeton. Trapping efficiencies ranged from 78 to 92 % for low level (0.5 μg) and 37–104 % for high level (50 and 100 μg) recoveries. Little to no degradation of compounds occurred over 31 days; recoveries ranged from 78 to 113 %. In the California Department of Food and Agriculture (CDFA) method, pesticides were detected by analyzing the extract by GC-MS to determine chlorothalonil, chlorpyrifos, cypermethrin, dichlorvos, dicofol, endosulfan 1, endosulfan sulfate, oxyfluorfen, permethrin, propargite, and trifluralin. A liquid chromatograph coupled to a MS was used to determine azinphos-methyl, chloropyrifos oxon, DEF, diazinon, diazinon oxon, dimethoate, dimethoate oxon, diuron, EPTC, malathion, malathion oxon, metolachlor, molinate, norflurazon, oryzalin, phosmet, propanil, simazine and thiobencarb. Trapping efficiencies for compounds determined by the CDFA method ranged from 10 to 113, 22 to 114, and 56 to 132 % for 10, 5, and 2 μg spikes, respectively. Storage tests yielded 70–170 % recovery for up to 28 days. These multiresidue methods represent flexible, sensitive, accurate, and cost-effective ways to determine residues of various pesticides in ambient air.  相似文献   

9.
Pesticides are considered as the most polluting substances. The residue of pesticides in agricultural crops, especially in greenhouse harvests, has been reported critical. Cucumber, considered as a vegetable, is an agricultural product which is commonly found in the Iranian food basket. The current study aims to assess the level of diazinon and oxydemeton-methyl existing in cucumbers sampled from Kerman greenhouses. The pesticide residue was extracted by acetone and dichloromethane. The extracts were cleaned up according to the solid-phase extraction method. The pesticide residues were then determined by capillary gas chromatography with nitrogen-phosphorus detection. The recoveries were 83 and 85 %, the limit of detection was 0.028 and 0.034 mg/kg, and the limits of qualification were 0.093 and 0.113 mg/kg for diazinon and oxydemeton-methyl in cucumber samples, respectively. The median of diazinon residue was detected 0.582 mg/kg, which was 11.64 times the national maximum residue limit (MRL) (0.05 mg/kg), and the median for oxydemeton-methyl was 1.910 mg/kg, being 1.91 times the MRL (1 mg/kg).  相似文献   

10.
The study looked at the levels of pesticides in okra grown close to a watermelon farm herein referred to as a non-target crop. The watermelon received some pesticide application in the course of its cultivation, and the okra which was not meant to be sprayed was also affected by the pesticide. About 500 okra samples were collected for a period of 6 weeks and pesticides extracted with 1:1 n-hexane and dichloromethane which was analysed with Agilent 2222 GC/MS coupled with 389 auto-sampler. The results confirmed accumulation of significant levels of pesticides in the non-target crop (okra grown close to watermelon farm). Levels of organochlorine pesticides ranged from 3.10 to 7.60 μg/kg whilst the organophosphorus pesticides had levels ranging from 2.80 to 2016.80 μg/kg. The synthetic pyrethroid pesticide mean levels also ranged from 0.10 to 4.10 μg/kg and were below World Health Organization/Food and Agriculture Organization-recommended residue levels, and though not appearing to constitute a grave threat to life, their occurrence is a concern, and pre-emptive techniques must be developed to thwart the contaminations. Though the non- target crop was not treated directly with the pesticides, some level of contamination with organochlorine and organophosphorus pesticides persisted in the crops. It can be inferred that application of pesticides affected the adjoining crops, meaning that inter-cropping and mix-cropping might not be acceptable when one of the crops requires pesticide application. It is important for the farmers to be trained to ensure proper application of pesticide to minimise its impact on the health of consumers.  相似文献   

11.
12.
The study monitored the concentrations of pesticide residues in vegetables arriving at Agbogbloshie, a central market in the Accra Metropolis from different parts of Ghana and beyond. A total of 810 samples of 5 different vegetables from Central, Volta, Greater Accra, Ashanti, Eastern Regions, and neighboring country (Togo) were collected from January 2009 through to December 2011. In all, 18 % of the samples had no detectable residues, 62 % were below the maximum residue limits (MRLs), and 20 % also exceeded the EU (MRLs) adopted values. Overall, lettuce contained the highest number of residues above their MRLs besides cucumber and cabbage. The pesticide residues were mainly organophosphates and synthetic pyrethroids. The results demonstrate the need for continuous monitoring of pesticide residues in vegetables arriving at the various major markets in Ghana.  相似文献   

13.
Two-year field trials were performed at two experimental sites to investigate dissipation and terminal residues of propamocarb in ginseng root, stem, leaf, and soil by high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). Mean recoveries ranged from 80.5 to 95.6 % with relative standard deviations (RSDs) of 5.5–9.1 % at fortified levels of 0.01, 0.02, 0.05 and 0.20 mg kg?1. The half-lives of propamocarb were 5.00–11.36 days in root, 5.07–11.46 days in stem, 6.83–11.31 days in leaf and 6.44–8.43 days in soil. The terminal residues of propamocarb were below the maximum residue limits (MRLs) of EU (0.20 mg kg?1) and South Korea (0.50 mg kg?1 in fresh ginseng and 1.0 mg kg?1 in dried ginseng) over 28 days after last spraying at recommended dosage. The results provide a quantitative basis for establishing the MRL and give a suggestion of safe and reasonable use of propamocarb in ginseng.  相似文献   

14.
Pesticide residue analysis of soil,water, and grain of IPM basmati rice   总被引:1,自引:0,他引:1  
The main aim of the present investigations was to compare the pesticide load in integrated pest management (IPM) with non-IPM crops of rice fields. The harvest samples of Basmati rice grain, soil, and irrigation water, from IPM and non-IPM field trials, at villages in northern India, were analyzed using multi-pesticide residue method. The field experiments were conducted for three consecutive years (2008–2011) for the successful validation of the modules, synthesized for Basmati rice, at these locations. Residues of tricyclazole, propiconazole, hexconazole, lambda cyhalothrin, pretilachlor chlorpyrifos, DDVP, carbendazim, and imidacloprid were analyzed from two locations, Dudhli village of Dehradun, Uttrakhand and Saboli and Aterna village of Sonepat, Haryana. The pesticide residues were observed below detectable limit (BDL) (<0.001–0.05 μg/g) in all 24 samples of rice grains and soil under IPM and non-IPM trials. Residues were below detection level (<0.001–0.05 μg/L) in irrigation water samples (2008–09). Residues of tricyclazole and carbendazim, analyzed from same locations, revealed pesticide residues as BDL (<0.001–0.05 μg/g) in all 40 samples of Basmati rice grains and soil. It was also observed as BDL (<0.001–0.05 μg/L) for 12 water samples (2009–2010). The residues of tricyclazole, propioconazole, chlorpyrifos, hexaconazole, pretilachlor, and λ-cyhalothrin were also found as BDL (<0.001–0.05 μg/g) in 40 samples of Basmati rice grains and soil and 12 water samples (<0.001–0.05 μg/L) (2010–2011).  相似文献   

15.
The residual levels of organochlorine pesticides (OCPs) in the dust fall around Lake Chaohu were measured using gas chromatography mass spectrometry from April 2010 to March 2011. The fluxes, components, temporal–spatial variations, and sources of OCPs were also analyzed. Twenty-one types of OCPs were detected in the dust fall samples around Lake Chaohu, with a total concentration of 51.54?±?36.31 ng/g and a total flux of 10.01?±?13.69 ng/(m2 day). Aldrin (35.3 %), endosulfan (39.1 %), dichlorodiphenyltrichloroethanes (DDTs) (49.8 %), and isodrin (37.1 %) were the major OCPs in the spring, summer, autumn, and winter, respectively. Both the residual level and the flux were higher in the spring than in other seasons and higher at the outer lake sampling sites than inner lake sampling site. The potential source of the hexachlorcyclohexanes in the dust fall may be recent lindane usage. The DDTs mainly came from historical dicofol usage, and a significant input of DDT was found during April and June. The presence of endosulfan may be due to the present use of technical endosulfan. The aldrin in the dust might be due to its occasional usage, and isodrin may be a result of long-distance transport from other countries.  相似文献   

16.
Monitoring of Pesticide Residues in Fruits   总被引:1,自引:0,他引:1  
Fruit samples of ber, grapes and guava analysed for pesticide residues employing multiresidue analysis by gas liquid chromatography equipped with ECD and NPD detectors and capillary columns showed contamination with organochlorine, synthetic pyrethroid and organophosphate insecticides. Among organochlorines, HCH, DDT and endosulfan were detected in almost all the samples. Residues of HCH and DDT were maximum in ber followed by grapes and guava where as of endosulfan were maximum in guava followed by grapes and ber. All the fruit samples showed the presence of residues with one or the other group of pesticides. Residues of none of the pesticides exceeded the MRL values in any sample. On the basis of these studies, it is suggested that monitoring studies should be extended to other fruits grown in different agro climatic regions which may serve as basis for future policy in chemical use.  相似文献   

17.
The study was conducted on 20 vegetables including leafy, root, modified stem, and fruity vegetables like bitter gourd, jack fruit, french-bean, onion, colocassia, pointed gourd, capsicum, spinach, potato, fenugreek seeds, carrot, radish, cucumber, beetroot, brinjal, cauliflower, cabbage, tomato, okra, and bottle gourd. Forty-eight pesticides including 13 organochlorines (OCs), 17 organophosphates (OPs), 10 synthetic pyrethriods (SPs), and eight herbicides (H) pesticides were analyzed. A total number of 60 samples, each in triplicates, were analyzed using Quick, Easy, Cheap, Effective, Rugged, and Safe method. The quantification was done by GC-ECD/NPD. The recovery varies from 70.22% to 96.32% with relative standard deviation (RSD) of 15%. However the limit of detection ranged from 0.001?C0.009 mg kg???1 for OCs, SPs, OPs, and H, respectively. Twenty-three pesticides were detected from total 48 analyzed pesticides in the samples with the range of 0.005?C12.35 mg kg???1. The detected pesticides were: ??-HCH, Dicofol, ??-Endosulfan, Fenpropathrin, Permethrin-II, ??-cyfluthrin-II, Fenvalerate-I, Dichlorvos, Dimethoate, Diazinon, Malathion, Chlorofenvinfos, Anilophos, and Dimethachlor. In some vegetables like radish, cucumber, cauliflower, cabbage, and okra, the detected pesticides (??-HCH, Permethrin-II, Dichlorvos, and Chlorofenvinfos) were above maximum residues limit (MRL) (PFA 1954). However, in other vegetables the level of pesticide residues was either below detection limit or MRL.  相似文献   

18.
The increasing application of pesticides in the uplands of northern Thailand has increased the transfer of pesticides to surface water. To assess the risk of pesticide use for stream water quality, we monitored the concentrations of seven pesticides (atrazine, dichlorvos, chlorpyrifos, dimethoate, chlorothalonil, (α-, β-) endosulfan, cypermethrin) frequently used in the Mae Sa watershed (77 km2) in water and sediment samples over a period of one and a half years (2007–2008). All investigated pesticides were recorded in the river. Chlorpyrifos was detected most often in water samples (75 % at the headwater station), while cypermethrin was most often found in riverbed (86 %) and in all suspended sediment samples. The highest concentrations of the pesticides were detected during the rainy season. About 0.002 to 4.1 % by mass of the applied pesticides was lost to surface water. The risk assessment was based on the risk characterization ratio (RCR). The RCRs of dichlorvos in water, (α-, β-) endosulfan, and cypermethrin in water and sediments were higher than unity indicating that they are likely to pose a threat to aquatic ecosystem. Finally, we discuss the role of sampling design on ecotoxicological risk assessment. Our study shows that pesticide contamination of surface waters is an environmental issue in the Mae Sa watershed and that measures need to be undertaken to reduce the loss of pesticides from soil to surface waters.  相似文献   

19.
Pesticides are shown to have a great effect on soil organisms, but the effect varies with pesticide group and concentration, and is modified by soil organic carbon content and soil texture. In the humid tropical islands of Andaman, India, no systematic study was carried out on pesticide residues in soils of different land uses. The present study used the modified QuEChERS method for multiresidue extraction from soils and detection with a gas chromatograph. DDT and its various metabolites, α-endosulfan, β-endosulfan, endosulfan sulfate, aldrin, and fenvalerate, were detected from the study area. Among the different pesticide groups detected, endosulfan and DDT accounted for 41.7 % each followed by aldrin (16.7 %) and synthetic pyrethroid (8.3 %). A significantly higher concentration of pesticide residues was detected in rice–vegetable grown in the valley followed by rice–fallow and vegetable–fallow in the coastal plains. Soil microbial biomass carbon is negatively correlated with the total pesticide residues in soils, and it varied from 181.2 to 350.6 mg?kg?1. Pesticide residues have adversely affected the soil microbial populations, more significantly the bacterial population. The Azotobacter population has decreased to the extent of 51.8 % while actinomycetes were the least affected though accounted for 32 % when compared to the soils with no residue.  相似文献   

20.
Samples (28) of complete vegetarian diet consumed from morning till night i.e. tea, milk, breakfast, lunch, snacks, dinner, sweet dish etc. were collected from homes, hostels and hotels periodically from Hisar and analysed for detecting the residues of organochlorine, synthetic pyrethriod, organophosphate and carbamate insecticides. The estimation was carried out by using multi-residue analytical technique employing gas chromatograph (GC)-electron capture detector and GC-nitrogen phosphorous detector systems equipped with capillary columns. The whole diet sample was macerated in a mixer grinder and a representative sample in duplicate was analyzed for residues keeping the average daily diet of an adult to be 1,300 g. On comparing the data, it was found that actual daily intake (microgram/person/day) of lindane in two and endosulfan in four samples exceeded the acceptable daily intake. Residues of other pesticides in all the diet samples were lower than the acceptable daily intake (ADI) of the respective pesticides. The study concluded that although all the diet samples were found contaminated with one or the other pesticide, the actual daily intake of only a few pesticides was higher than their respective ADI. More extensive study covering other localities of Haryana has been suggested to know the overall scenario of contamination of vegetarian diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号