首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
Proper assessment of soil cadmium (Cd) concentrations is essential to establish legislative limits. The present study aimed to assess background Cd concentrations in soils from the state of São Paulo, Brazil, and to correlate such concentrations with several soil attributes. The topsoil samples (n?=?191) were assessed for total Cd contents and for other metals using the USEPA 3051A method. The background concentration was determined according to the third quartile (75th). Principal component analysis, Spearman correlation, and multiple regressions between Cd contents and other soil attributes (pH, cation exchange capacity (CEC), clay content, sum of bases, organic matter, and total Fe, Al, Zn, and Pb levels) were performed. The mean Cd concentration of all 191 samples was 0.4 mg kg?1, and the background concentration was 0.5 mg kg?1. After the samples were grouped by parent material (rock origin) and soil type, the background Cd content varied, i.e., soils from igneous, metamorphic, and sedimentary rocks harbored 1.5, 0.4, and 0.2 mg kg?1 of Cd, respectively. The background Cd content in Oxisols (0.8 mg kg?1) was higher than in Ultisols (0.3 mg kg?1). Multiple regression demonstrated that Fe was primarily attributed to the natural Cd contents in the soils (R 2?=?0.79). Instead of a single Cd background concentration value representing all São Paulo soils, we propose that the concentrations should be specific for at least Oxisols and Ultisols, which are the primary soil types.  相似文献   

2.
Natural and chemically enhanced phytoextraction potentials of maize (Zea mays L.) and sesbania (Sesbania aculeata Willd.) were explored by growing them on two soils contaminated with heavy metals. The soils, Gujranwala (fine, loamy, mixed, hyperthermic Udic Haplustalf) and Pacca (fine, mixed, hyperthermic Ustollic Camborthid), were amended with varying amounts of ethylenediaminetetraacetic acid (EDTA) chelating agent, at 0, 1.25, 2.5, and 5.0 mM kg?1 soil to enhance metal solubility. The EDTA was applied in two split applications at 46 and 60 days after sowing (DAS). The plants were harvested at 75 DAS. Addition of EDTA significantly increased the lead (Pb) and cadmium (Cd) concentrations in roots and shoots, uptake, bioconcentration factor, and phytoextraction rate over the control. Furthermore, addition of EDTA also significantly increased the soluble fractions of Pb and Cd in soil over the controls; the maximum increase of Pb and Cd was 13.1-fold and 3.1-fold, respectively, with addition of 5.0 mM EDTA kg?1soil. Similarly, the maximum Pb and Cd root and shoot concentrations, translocation, bioconcentration, and phytoextraction efficiency were observed at 5.0 mM EDTA kg?1 soil. The results suggest that both crops can successfully be used for phytoremediation of metal-contaminated calcareous soils.  相似文献   

3.
In a preliminary study, we found that the cadmium (Cd) concentrations in shoots of the winter farmland weeds Cardamine hirsuta Linn. and Gnaphalium affine D. Don exceeded the critical value of a Cd-hyperaccumulator (100 mg kg?1), indicating that these two farmland weeds might be Cd-hyperaccumulators. In this study, we grew these species in soil containing various concentrations of Cd to further evaluate their Cd accumulation characteristics. The biomasses of C. hirsuta and G. affine decreased with increasing Cd concentrations in the soil, while the root/shoot ratio and the Cd concentrations in shoot tissues increased. The Cd concentrations in shoots of C. hirsuta and G. affine reached 121.96 and 143.91 mg kg?1, respectively, at the soil Cd concentration of 50 mg kg?1. Both of these concentrations exceeded the critical value of a Cd-hyperaccumulator (100 mg kg?1). The shoot bioconcentration factors of C. hirsuta and G. affine were greater than 1. The translocation factor of C. hirsuta was less than 1 and that of G. affine was greater than 1. These findings indicated that C. hirsuta is a Cd-accumulator and G. affine is Cd-hyperaccumulator. Both plants are distributed widely in the field, and they could be used to remediate Cd-contaminated farmland soil in winter.  相似文献   

4.
Top predators like the Neotropical otter, Lontra longicaudis annectens, are usually considered good bioindicators of habitat quality. In this study, we evaluated heavy metal contamination (Hgtot, Pb, Cd) in the riverine habitat, prey (crustaceans and fish), and otter feces in two Ramsar wetlands with contrasting upstream contamination discharges: Río Blanco and Río Caño Grande in Veracruz, Mexico, during the dry, the wet, and the nortes seasons. Most comparisons revealed no differences between sites while seasonal differences were repeatedly detected for all of the compartments. Higher concentrations of Pb during the dry season and of Cd during the wet season in otter feces mirrored differences detected in the most seasonally consumed prey. Compared with fecal methylmercury values reported for the European otter (0.25–0.75 mg kg?1) in unprotected areas, the Hgtot levels that we measured were lower (0.02–0.17 mg kg?1). However, Pb (117.87 mg kg?1) and Cd (9.14 mg kg?1) concentrations were higher (Pb, 38.15 mg kg?1 and Cd, 4.72 mg kg?1) in the two Ramsar wetlands. Protected areas may shelter species, but those with water-linked diets may suffer the effect of chemicals used upstream.  相似文献   

5.
Surface sediments collected from the Lagos Lagoon, Nigeria, and three adjoining rivers were analysed for their physicochemical properties and pseudo-total concentration of the potentially toxic metals (PTM) Cd, Cr, Cu, Pb and Zn. The concentration of the PTM varied seasonally and spatially. Odo-Iyaalaro was observed to be the most polluted river, with highest concentrations of 42.1 mg kg?1, 102 mg kg?1, 185 mg kg?1, 154 mg kg?1 and 1040 mg kg?1 of Cd, Cr, Cu, Pb and Zn, respectively, while Ibeshe River was the least contaminated, apart from a site affected by Cu from the textile industry. Some of the sediments were found to be above the consensus-based probable effect concentrations and Dutch sediment guideline for metals. Overall metal concentrations were similar to those reported for other tropical lagoon and estuarine systems affected by anthropogenic inputs as a result of rapid urbanisation. Due to the large number of samples, principal component analysis was used to examine relationships within the data set. Generally, sediments collected during the dry season were observed to have higher concentration of PTM than those collected during the rainy season. This means that PTM could accumulate over a prolonged period and then be released relatively rapidly, on an annual basis, into tropical lagoon systems.  相似文献   

6.
In this research, the relative performance in arsenic (As) remediation was evaluated among some barnyard grass and rice species under hydroponic conditions. To this end, four barnyard grass varieties and two rice species were selected and tested for their remediation potential of arsenic. The plants were grown for 2 weeks in As-rich solutions up to 10 mg As L?1 to measure their tolerance to As and their uptake capabilities. Among the varieties of plants tested in all treatment types, BR-29 rice absorbed the highest amount of As in the root, while Nipponbare translocated the maximum amount of As in the shoot. Himetainubie barnyard grass produced the highest biomass, irrespective of the quantity of As in the solution. In all As-treated solutions, the maximum uptake of As was found in BR-29 followed by Choto shama and Himetainubie. In contrast, while the bioaccumulation factor was found to be the highest in Nipponbare followed by BR-29 and Himetainubie. The results suggest that both Choto shama and Himetainubie barnyard grass varieties should exhibit a great potential for As removal, while BR-29 and Nipponbare rice species are the best option for arsenic phytoremediation.  相似文献   

7.
Concentrations of Cd, Cu, Fe, Pb, and Zn were measured in the samples of street dust and surface roadside soil before Jordan switched to unleaded fuel usage. The samples were collected from Petra, the most tourist-attractive site in Jordan. The samples were analyzed for heavy metals by atomic absorption spectrophotometry. Our results show that the distribution of metals in the soil samples is affected by wind direction in the investigated area. The highest level of metals was found in the eastern parts of the roads due to the westerly-dominant wind in the studied area. The contamination levels of metals decrease as the distance from the edge of the road increases. In the roadside soil samples, the means for the concentrations of the metals at 1 m from the east side of the main road are 1.0, 19.1, 3791.4, 177.0, and 129.0 mg kg?1 for Cd, Cu, Fe, Pb, and Zn, respectively. In the samples of street dust, the means of the concentrations of the metals in the investigated area are 9.7, 11.8, 4694.4, 31.6, and 24.8 mg kg?1 for Cd, Cu, Fe, Pb, and Zn, respectively. In conclusion, the lithogenic origins (traffic emissions) are responsible for the diffusion of these metals in the studied region.  相似文献   

8.
There are increasing concerns on heavy metal contaminant in soils and vegetables. In this study, we investigated heavy metal pollution in vegetables and the corresponding soils in the main vegetable production regions of Zhejiang province, China. A total of 97 vegetable samples and 202 agricultural soil samples were analyzed for the concentrations of Cd, Pb, As, Hg, and Cr. The average levels of Cd, Pb, and Cr in vegetable samples [Chinese cabbage (Brassica campestris spp. Pekinensis), pakchoi (Brassica chinensis L.), celery (Apium graveolens), tomato (Lycopersicon esculentum), cucumber (Colletotrichum lagenarium), cowpea (Vigna unguiculata), pumpkin (Cucurbita pepo L.), and eggplant (Solanum melongena)] were 0.020, 0.048, and 0.043 mg kg?1, respectively. The Pb and Cr concentrations in all vegetable samples were below the threshold levels of the Food Quality Standard (0.3 and 0.5 mg kg?1, respectively), except that two eggplant samples exceeded the threshold levels for Cd concentrations (0.05 mg kg?1). As and Hg contents in vegetables were below the detection level (0.005 and 0.002 mg kg?1, respectively). Soil pollution conditions were assessed in accordance with the Chinese Soil Quality Criterion (GB15618-1995, Grade II); 50 and 68 soil samples from the investigated area exceeded the maximum allowable contents for Cd and Hg, respectively. Simple correlation analysis revealed that there were significantly positive correlations between the metal concentrations in vegetables and the corresponding soils, especially for the leafy and stem vegetables such as pakchoi, cabbage, and celery. Bio-concentration factor values for Cd are higher than those for Pb and Cr, which indicates that Cd is more readily absorbed by vegetables than Pb and Cr. Therefore, more attention should be paid to the possible pollution of heavy metals in vegetables, especially Cd.  相似文献   

9.
The major objective of this investigation was to evaluate the potential of scented geraniums, Pelargonium roseum, to uptake and accumulate heavy metals nickel (Ni), cadmium (Cd), or lead (Pb). For this, plants were grown in an artificial soil system and exposed to a range of metal concentrations over a 14-day treatment period. Then, metals from the entire biomass were extracted. The results showed that scented geranium plants accumulated in excess of 20,055 mg of Ni kg?1 dry weight (DW) of root and 10,889 mg of Ni kg?1 DW of shoot, and in excess of 86,566 mg of Pb kg?1 DW for roots and 4,416 mg of Pb kg?1 DW for shoots within 14 days. Also, the uptake and accumulation of cadmium in roots of scented geranium plants increased with the exposure at low (250, 500 mg?L?1) and medium level (750 mg?L?1) followed by a decline at the highest level (1,000 mg?L?1). The highest accumulation in roots (31,267 mg?kg?1 DW) was observed in 750 mg?L?1 cadmium treatment. In the shoots of scented geraniums, the highest amount of metal accumulation (1,957 mg?kg?1 DW) was detected at 750 and 1,000 mg?L?1 of cadmium in the culture solution. Finally, since the high concentrations of Ni or Pb accumulated in shoots of scented geranium has far exceeded 0.1 % DW and for Cd has far exceeded 0.01 % DW, P. roseum is a new hyperaccumulator species for these metals and can be used in phytoremediation industry.  相似文献   

10.
Studies of heavy metal contamination and ecological risk in estuaries are an important emerging area of environmental science. However, there have been few detailed studies of heavy metal contamination that concern the spatial variation of heavy metal levels in water, sediment, and oyster tissue. Because of the effective uptake of heavy metals, cultured oysters are a cheap and effective subject for study. This study, conducts an experiment in the Er-Ren river to examine the biological uptake of heavy metals in farmed, cultured oysters. The distribution of copper, zinc, lead, cadmium, and arsenic concentrations in water, sediment, and oysters from the Er-Ren river is also evaluated. By sequential extraction of the sediments, the following order of mobilities is found for heavy metals Pb?>?Cd?>?As?>?Zn?>?Cu. The highest percentages of heavy metals are found in the residual phase. The mean uptake rates for young oysters are 7.24 mg kg?1 day?1 for Cu and 94.52 mg kg?1 day?1 for Zn, but that for adult oyster is 10.79 mg kg?1 day?1 for Cu and 137.24 mg kg?1 day?1 for Zn. With good policies and management, the establishment of cultured oyster frames in these contaminated tributaries and near shore environments is a potential method for removing Cu and Zn and protecting the coast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号