首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
The ecoregion and watershed frameworks are landscape-based classifications that have been used to group waterbodies with respect to measures of community structure; however, they have yet to be evaluated for grouping lakes for demographic characteristics of fish populations. We used a multilevel modeling approach to determine if variability in mean fish length at age could be partitioned by ecoregions and watersheds. For the ecoregions analysis, we then examined if within-ecoregion variability could be explained by local water quality and lake morphometry characteristics. We used data from agency surveys conducted during 1974-1984 for age 2 and 3 fish of seven common warm and coolwater fish species. Variance in mean length at age between ecoregions for all species was not significant, and between-watershed variance estimates were only significant in 3 out of 14 analyses; however, the total amount of variation between watersheds was very small (ranging from 1.8% to 3.7% of the total variance), indicating that ecoregions and watersheds were ineffective in partitioning variability in mean length at age. Within ecoregions, water quality and lake morphometric characteristics accounted for 2%-23% of the variation in mean length at age. Measures of lake productivity were the most common significant covariates, with mean length at age increasing with increasing lake productivity. Much of the variability in mean length at age was not accounted for, suggesting that other local factors such as biotic interactions, fish density, and exploitation are important. The results indicate that the development of an effective regional framework for managing inland lakes will require a substantial effort to understand sources of demographic variability and that managers should not rely solely on ecoregions or watersheds for grouping lakes with similar growth rates.  相似文献   

2.
LANDSCAPE DEVELOPMENT INTENSITY INDEX   总被引:12,自引:0,他引:12  
  相似文献   

3.
Characterizing Small Subbasins: A Case Study from Coastal Oregon   总被引:1,自引:0,他引:1  
A fine-grained statisticaly robust probability sample of stream segments is used to compare two small (20,000 hectare) subbasins of the Tillamook watershed, north coastal Oregon. The two subbasins are matched with respect to several variables [size coastal climates], but vary in terms of geology and consequently land use. A total of 67 wadeable + non-wadeable sizes were identified for sampling in the two subbasins (combined) over two field seasons from a sampling universe consisting of the River Reach File 3 (blue lines on 1:100,000 maps). Target variables include an extensive array of physical habitat endpoints, selected water chemistry endpoints, species composition, and relative abundance of both benthic macroinvertebrates and fish. Field protocols generally followed those of the U.S. EPA's Environmental Monitoring and Assessment Program (EMAP).Eleven fish species were encountered, a typically low number for coastal Oregon streams. Exploratory analysis using nonmetric multidimensional scaling revealed that 92.4% of the variation in the fish assemblages could be explained with two ordination axes. Environmental factors related to stream size and substate were the most correlated to these axes. Further, stream segments for the two subbasins tended to map in different areas of species space. Therefore, we also give unweighted probability distributions for several of the factors that heavily on these two axes by subbasins, as well as probability distributions for chemical endpoints. Results from the subset of sites sampled during the first year (21 wadeable sites) reveal: 1) differences between samples from the two subbasins relates to dream size and substrate composition that are consistent with known differences in geology and land use, 2) unexpectedly minor differences between samples from the two subbasins for stream temperature, canopy cover, and dissolved oxygen, 3) differences between samples from the two subbasins for total P, and total N, possibly related to land use, and 4) unexpected differences in samples from the two subbasins for conductivity, probably related to geological factors. Sample size for each subbasin is low and therefore our samples cannot be taken to necessarily characterize either subbasin. However, our findings are consistent with a comprehensive assessment that had been previously produced for one of the two subbasins.All field work was completed in 8 weeks 3-person field crew. We conclude that rapid assessment protocols, based on probability samples at this level of resolution, can be a cost-effective approach to watershed analysis. This approach should be seen as a complement to, rather than a replacement for, systematic surveys that produced finer scale, reach specific information on factors such as channel complexity and cover relevant to in-stream restoration planning.  相似文献   

4.
The US Forest Service administers a long-term, nationwide ozone biomonitoring program in partnership with other state and federal agencies to address national concerns about ozone impacts on forest health. Biomonitoring surveys begun in 1994 in the East and 1998 in the West provide important regional information on ozone air quality and a field-based record of ozone injury unavailable from any other data source. Surveys in the Northeast and North Central subregions cover 450 field sites in 24 states where ozone-sensitive plants are evaluated for ozone-induced foliar injury every year. Sites are typically large, undisturbed openings (>3 acres in size) close to forested areas where >3 bioindicator species are available for evaluation. Over the 16-year sampling period, injury indices have fluctuated annually in response to seasonal ozone concentrations and site moisture conditions. Sites with and without injury occur at all ozone exposures but when ambient concentrations are relatively low, the percentage of uninjured sites is much greater than the percentage of injured sites; and regardless of ozone exposure, when drought conditions prevail, the percentage of uninjured sites is much greater than the percentage of injured sites. Results indicate a declining trend in foliar injury especially after 2002 when peak ozone concentrations declined across the entire region.  相似文献   

5.
6.
Characterizing fish assemblages in lentic ecosystems is difficult, and multiple sampling methods are almost always necessary to gain reliable estimates of indices such as species richness. However, most research focused on lentic fish sampling methodology has targeted recreationally important species, and little to no information is available regarding the influence of multiple methods and timing (i.e., temporal variation) on characterizing entire fish assemblages. Therefore, six lakes and impoundments (48–1,557 ha surface area) were sampled seasonally with seven gear types to evaluate the combined influence of sampling methods and timing on the number of species and individuals sampled. Probabilities of detection for species indicated strong selectivities and seasonal trends that provide guidance on optimal seasons to use gears when targeting multiple species. The evaluation of species richness and number of individuals sampled using multiple gear combinations demonstrated that appreciable benefits over relatively few gears (e.g., to four) used in optimal seasons were not present. Specifically, over 90 % of the species encountered with all gear types and season combinations (N?=?19) from six lakes and reservoirs were sampled with nighttime boat electrofishing in the fall and benthic trawling, modified-fyke, and mini-fyke netting during the summer. Our results indicated that the characterization of lentic fish assemblages was highly influenced by the selection of sampling gears and seasons, but did not appear to be influenced by waterbody type (i.e., natural lake, impoundment). The standardization of data collected with multiple methods and seasons to account for bias is imperative to monitoring of lentic ecosystems and will provide researchers with increased reliability in their interpretations and decisions made using information on lentic fish assemblages.  相似文献   

7.
A national dataset on concentrations of mercury in fish, compiled mainly from state and federal monitoring programs, was used to evaluate trends in mercury (Hg) in fish from US rivers and lakes. Trends were analyzed on data aggregated by site and by state, using samples of the same fish species and tissue type, and using fish of similar lengths. Site-based trends were evaluated from 1969 to 2005, but focused on a subset of the data from 1969 to 1987. Data aggregated by state were used to evaluate trends in fish Hg concentrations from 1988 to 2005. In addition, the most recent Hg fish data (1996?C2005) were compared to wet Hg deposition data from the Mercury Deposition Network (MDN) over the same period. Downward trends in Hg concentrations in fish from data collected during 1969?C1987 exceeded upward trends by a ratio of 6 to 1. Declining Hg accumulation rates in sediment and peat cores reported by many studies during the 1970s and 1980s correspond with the period when the most downward trends in fish Hg concentrations occurred. Downward Hg trends in both sediment cores and fish were also consistent with the implementation of stricter regulatory controls of direct releases of Hg to the atmosphere and surface waters during the same period. The southeastern USA had more upward Hg trends in fish than other regions for both site and state aggregated data. Upward Hg trends in fish from the southeastern USA were associated with increases in wet deposition in the region and may be attributed to a greater influence of global atmospheric Hg emissions in the southeastern USA. No significant trends were found in 62% of the fish species from six states from 1996 to 2005. A lack of Hg trends in fish in the more recent data was consistent with the lack of trends in wet Hg deposition at MDN sites and with relatively constant global emissions during the same time period. Although few significant trends were observed in the more recent Hg concentrations in fish, it is anticipated that Hg concentrations in fish will respond to changes in atmospheric Hg deposition, however, the magnitude and timing of the response is uncertain.  相似文献   

8.
The response of natural systems to atmospheric change may depend critically on species diversity and on the genetic diversity (variability) found within their respective populations. Yet, most surveys of aquatic invertebrates account for neither. This may be of particular concern for benthic populations in running waters because of the considerable variability and the fragmentary nature of these habitats (e.g. isolated watersheds). In such habitats, species with limited genetic variability and/or limited dispersal capabilities (genetically differentiated populations) may be unable to track rapid environmental change, and may be more susceptible to climatic perturbations. We present a conceptual framework to illustrate some of the potential problems of ignoring population genetics when considering the impacts of global atmospheric change. We then review a simple method to assess population genetic structure and we evaluate available data on the genetic structure of North American stream invertebrates. These data indicate that benthic taxa often consist of genetically differentiated local populations, or even previously unknown species. Accordingly, our limited knowledge of population structure among benthic invertebrates may result in the unwitting loss of genetic and/or species diversity. Enhanced taxonomic research incorporating molecular techniques is clearly warranted. Conservation strategies based on the preservation and remediation of a diversity of aquatic habitats are likely to be our best means of ensuring species and genetic diversity of invertebrate taxa.  相似文献   

9.
We describe a flexible, computationally efficient stream network model, which forms the core of a simulation framework that spatially integrates the contributions from point and nonpoint sources in a watershed. The model uses the map and stream topology information in the US Environmental Protection Agency’s Reach File 3 to generate a spatially explicit network of stream reaches. Water and materials are routed through the stream network to the watershed outlet, and the routing process accounts for transit times and for possible nutrient losses in streams. This model can be applied wherever Reach File maps or maps from the newer National Hydrography Dataset are available, and it can be combined with models of other watershed processes to create a complete watershed simulation system. We present an application of the stream network model to two watersheds of different sizes in the Patuxent River watershed of Maryland, USA. Simulated predictions of streamflow and nitrate concentrations are either very good or good according to standards developed for evaluating the widely used Hydrologic Simulation Program – Fortran (HSPF) watershed model.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号