首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
徐州地区地下水中内分泌干扰物的监测与风险评估   总被引:3,自引:0,他引:3  
采用液相色谱-串联质谱法测定徐州地区地下水中内分泌干扰物,并用雌二醇当量EEQ计算法和风险熵RQ计算法分别对其活性和生态风险水平分析评价。结果表明,徐州地区地下水中不含雌酮(E1)、雌二醇(E2)、雌三醇(E3)、炔雌醇(EE2)等内分泌干扰物,只含有双酚A(BPA),且最高值达26.45 ng/L,提出应把BPA作为控制重点。  相似文献   

2.
综述了炔雌醇(EE2)的主要危害以及国内外城市污水处理厂对其的处理能力,指出现有污水处理厂对EE2的去除效率仍较低,微生物降解是去除EE2等类固醇雌激素的主要途径。总结了EE2微生物降解的代表性研究成果,重点分析了EE2在异养代谢降解、硝化共代谢降解、异养共代谢降解、微生物协同降解和降解功能基因等方面的研究进展,提出共代谢是EE2的主要去除机制,未来可开展微生物学共代谢机制研究,以提升EE2的去除效率,有效控制水生态和健康风险。  相似文献   

3.
深圳主要河流中雌激素污染调查   总被引:1,自引:0,他引:1  
调查了深圳市10条主要河流雌激素污染现状,结果表明,双酚A在深圳市河流中28个监测点中27个点有检出,检出率96.4%,质量浓度为未检出~6.042 μg/L;17β雌二醇(E2)在深圳市河流中28个监测点中8个点有检出,检出率28.6%,质量浓度为未检出~0.011 6μg/L,能检出的17β雌二醇(E2)值大都在0.001 5μg/L~0.003 9 μg/L之间;雌三醇(E3)仅在1个监测点(新洲河河口)有检出,对壬基酚均未检出.  相似文献   

4.
利用重组双杂交酵母快速检测技术分析了东江下游两个污水厂、8个工业废水排放口和6条受纳河流水体共16个样品中的雌激素效应物质浓度,并按照雌二醇当量(EEQ)计算了水中雌激素效应水平。在被检测废水样品中,排水的EEQ值处于0.3~2.8ng/L之间,其中造纸厂与纸制品厂排水具有明显雌激素效应。采自河涌的6个样品有4个样品检出雌激素活性,雌激素效应水平在1.9~8.8ng EEQ/L之间。结果表明,东江下游行业废水处理厂出水中的EEQ浓度应与河涌水体中的EEQ在相同数量级, 与国内报道的其他地区河流及工厂排水污染水平类似。污染较为严重的河涌水体雌激素水平明显高于污水处理厂及工厂排水,推断污染河涌水体中的雌激素效应物质应来自未经处理的污染源。  相似文献   

5.
在单因素试验、Plackett-Burman设计试验基础上,采用Box-Behnken响应面法对养殖水体中炔雌醇(EE2)的固相萃取条件进行优化。结果表明,洗脱液体积、洗脱液组成和淋洗液体积是影响EE2固相萃取回收率的3个主要因素;EE2的最佳固相萃取条件为:水样pH值为3,进样流量为3.0 mL/min,淋洗液为体积分数为10%的甲醇水溶液,淋洗液体积7.0 mL,洗脱液为乙酸乙酯-正己烷混合溶液(体积比为9∶1),洗脱液体积12.0 mL。该条件下养殖水样中EE2固相萃取回收率为81.6%~86.7%。  相似文献   

6.
双酚A(BPA)和三氯生(TCS)是两种受广泛关注的典型环境内分泌干扰物,而长江口-杭州湾是我国最主要的海产品生产海域之一,因此,长江口-杭州湾海洋生物中BPA和TCS的污染特征应引起重视。检测了长江口-杭州湾26种海洋生物体(17种鱼类、6种软体动物、3种甲壳类)肌肉组织中BPA和TCS的浓度分布特征,结果显示:所有海洋生物样品中都可检出BPA,其浓度为0.14~18 ng/g(平均5.2 ng/g);73%的海洋生物样品中含有TCS,其浓度为P<0.01);鱼类、软体动物、甲壳类中BPA和TCS的平均浓度分别为5.8、5.2、2.3 ng/g和12、15、28 ng/g;据估算,浙江普通居民通过食用海洋生物对BPA和TCS的每日摄入量均值分别为5.6 ng/kg和15 ng/kg。  相似文献   

7.
王斌 《中国环境监测》2016,32(5):116-119
免疫磁性微球(SMPPA)应用于水样中吲哚美辛的分离富集,并应用高效液相色谱法对吲哚美辛进行测定。在优化的淋洗和洗脱条件下,70%甲醇和10%甲醇分别作为洗脱液和淋洗液,其回收率能达到90%。选择了湖水、河水、自来水、污水厂进口水以及医院排水为真实样品进行测定,其中湖水、河水、自来水3种真实水样中未能检测出吲哚美辛,污水厂进口水以及医院排水中吲哚美辛的含量分别为0.762、35.4 ng/m L。对这5种水进行加标回收吲哚美辛,加标回收率为92.7%~113%,RSD为1.09%~7.73%。该方法具有简便、快速、特异性等特点,能有效地分离富集水样中的目标物,对其他目标物具有广泛的实际应用价值。  相似文献   

8.
阐述了从河川沙塘鳢(Odontobutis potamophila)卵巢中提取卵黄磷脂蛋白,以及制备兔抗卵黄磷脂蛋白抗血清的过程,介绍了用此血清建立的河川沙塘鳢血清卵黄蛋白原间接竞争ELISA检测方法.以卵黄磷脂蛋白为参照,此法的最低检测质量浓度为40μg/L,最佳工作范围为160 μg/L-1 280 μg/L.使用此法检测雌二醇(E2)、壬基酚(NP)对雄性河川沙塘鳢的卵黄蛋白原诱导效果时,前者的最低有效质量浓度是0.001 mg/kg(E2/鱼质量),后者的最低有效质量浓度是50 mg/kg(NP/鱼质量).结果表明,200 mg/kg(NP/鱼质量)NP可引起雄性河川沙塘鳢血清卵黄蛋白原显著倍增.在太湖东山水域进行为期1年的生态调查时,发现3、4月份期间,曾有50%和35%样品呈阳性.  相似文献   

9.
采用高效液相色谱法测定17种药物活性物质在5家污水厂的含量水平和去除率,并探讨其迁移转化特征。结果表明,17种药物活性物质均能在污水厂进水中检出,测定值为—~21. 58μg/L,在脱水污泥中的测定值为—~30. 81μg/g。分析其在污水厂中迁移转化特征,表明污水处理过程中磺胺类药物的主要去除机制是污泥吸附作用,而β-内酰胺类、卡马西平和降压降脂类等药物的主要去除机制为降解作用。  相似文献   

10.
通过建立直接进样-高效液相色谱串联质谱(HPLC-MS/MS)测定污水处理厂进出水中的10种全氟化合物的方法,了解污水厂进出水中全氟化合物污染情况。10种目标分析物在10~500 ng/L范围内具有良好的线性关系,方法检出限为2.3~8.3 ng/L,精密度为2.1%~7.1%,加标回收率为60.6%~91.7%。应用该方法测定某市典型污水厂进出水中的全氟化合物,进水中全氟化合物质量浓度为90.9~206 ng/L,主要污染物是PFOA、PFHxS和PFBS;出水中全氟化合物的质量浓度为67.4~158 ng/L,环境排放量为6.7~22.9 g/d,主要污染物是PFOA和PFHxS。结果表明,该方法能很好地适用于复杂基质中10种全氟化合物的检测。  相似文献   

11.
Occurrence and fate of eight kinds of selected endocrine-disrupting compounds (EDCs) in three sewage treatment plants (STPs) of Beijing, China was investigated. These EDCs, composed of 4-octylphenol (4-OP), 4-n-nonylphenol (4-n-NP), bisphenol A (BPA), estrone (E1), 17α-estradiol (17α-E2), 17β-estradiol (E2), estriol (E3) and 17α-ethinylestradiol (EE2), in every step of STPs, were simultaneously analysed by gas chromatography/mass spectrometry after derivatisation. All the EDCs were detected in the influents of three STPs, and BPA was the most abundant compound. The concentrations of EDCs ranged from 36.6 ng/l of 17α-E2 (STP C) to 1342.3 ng/l of BPA (STP B) in the influent sewages and from below limits of detection of E2 and E3 (STP C) to 142.5 ng/l of E1 (STP B) in the effluent sewages. The STPs could not remove alkylphenols effectively from the aqueous phase with less than 40% reduction. BPA decreased over 90%, and steroid estrogens achieved considerable reductions from 64.8% of E2 to 94.9% of E3. Generally, biological treatment was more effective in removing alkylphenols, BPA and natural estrogens from the aqueous phase than primary treatment. However, the synthetic estrogen, EE2, was mostly removed by the primary treatment with about 63.5% reduction. It is the first time that the concentration of 17α-E2 in the sewage of China was reported in this paper. The compound might have a bearing with the waste effluents of dairy farms around urban area of Beijing.  相似文献   

12.
Concern over steroid estrogens has increased rapidly in recent years due to their adverse health effects. Effluent discharge from wastewater treatment plants (WWTPs) is the main pollutant source for environmental water. To understand the pollutant level and fate of steroid estrogens in WWTPs, the occurrence of estrone (E1), 17-β-estradiol (E2), estriol (E3), and 17-β-ethinylestradiol (EE2) was investigated in the Gaobeidian WWTP in Beijing, China. Water samples from influent as well as effluent from second sedimentation tanks and advanced treatment processes were taken monthly during 2006 to 2007. In influent, steroid estrogen concentrations varied from 11.6 to 1.1?×?10(2)?ng/l, 3.7 to 1.4?×?10(2)?ng/l, no detection (nd) to 7.6×10(2)?ng/l and nd to 3.3?×?10(2)?ng/l for E1, E2, E3, and EE2, respectively. Compared with documented values, the higher steroid estrogen concentrations in the WWTP influent may be due to higher population density, higher birthrate, less dilution, and different sampling time. Results revealed that a municipal WWTP with an activated sludge system incorporating anaerobic, anoxic, and aerobic processes could eliminate natural and synthetic estrogens effectively. The mean elimination efficiencies were 83.2%, 96.4%, 98.8%, and 93.0% for E1, E2, E3, and EE2, respectively. The major removal mechanism for natural estrogens and synthetic estrogen EE2 were biodegradation and sorption on the basis of mass balance in water, suspension particles, and sludge. In the WWTP effluent, however, the highest concentrations of E1, E2, E3, and EE2 attained were 74.2, 3.9, 5.1, and 4.6?ng/l, respectively. This is concerning as residual steroid estrogens in WWTP effluent could lead to pollution of the receiving water. Advanced flocculation treatment was applied in the WWTP and transformed the residual estrogen conjugates to free species, which were reduced further by filtration with removal shifting from 32% to 57% for natural estrogen, although no EE2 was removed.  相似文献   

13.
Concentrations of six endocrine-disrupting compounds (EDCs), bisphenol A (BPA), estrone (E(1)), 17β-estradiol (E(2)), estriol (E(3)), 17α-ethynylestradiol (EE(2)) and diethylstilbestrol (DES), were assessed in influents, effluents and excess sludge in ten municipal wastewater treatment plants (WWTPs) in the Three Gorges Reservoir (TGR) area, Chongqing, China. Three types of activated sludge treatment processes, oxidation ditch (OD), reversed anaerobic-anoxic-oxic (rA(2)/O) technology and sequential batch reactor (SBR), were used in the surveyed WWTPs. These WWTPs were all combined landfill leachate-sewage treatment plants. All analytes were extracted by solid-phase extraction (SPE) in the dissolved phase and by accelerated solvent-based extraction (ASE) in sludge. Gas chromatography-mass spectrometry (GC-MS) was employed for the analysis of EDCs. Among these EDCs, BPA was the most frequently detected and abundant compound (100.0-10566.7 ng L(-1), 15.5-1210.7 ng L(-1) and 85.0-2470.4 ng g(-1) with respect to the influents, effluents and excess sludge samples). The greatest levels of steroidal estrogens in municipal influents were observed in E(3) which were all >100 ng L(-1), followed by E(1) (42.2-110.7 ng L(-1)) and E(2) (7.4-32.7 ng L(-1)), and in the effluents and sludge were E(1) > E(3) > E(2) which were all <31 ng L(-1) and 105 ng g(-1), respectively. Regarding synthetic estrogens, EE(2) was frequently detected in the influents, occurring below 50 ng L(-1), while DES was not detected at all. A high correlation coefficient was observed between the leachate-sludge ratio and concentrations of influent EDCs, and it was statistically significant (i.e., R > 0.65, P < 0.05), but removal efficiency of the EDCs did not show significant differences with OD, rA(2)/O and SBR processes. Furthermore, modification of treatment technology as well as operational parameters, such as hydraulic retention time (HRT), sludge retention time (SRT) and disinfection process (DP), were recommended to further eliminate the residual EDCs.  相似文献   

14.
The occurrence and removal of eight endocrine disrupting compounds (EDCs), including estrone (E(1)), 17β-estradiol (E(2)), estriol (E(3)), 17α-ethinylestradiol (EE(2)), diethylstilbestrol (DES), bisphenol A (BPA), nonylphenol (NP) and octylphenol (OP), and their estrogenicities were investigated in a sewage treatment plant in Harbin city, China. The EDCs were extracted from wastewater samples by solid phase extraction (SPE) method and analyzed with gas chromatography coupled with mass spectrometry (GC-MS). The average concentrations in the influents and effluents ranged from 6.3 (EE(2)) to 1725.8 ng L(-1) (NP) and from 相似文献   

15.
Steroid estrogens such as estrone (E1), 17β-estradiol (E2), estriol (E3), and 17α-ethynylestradiol (EE2) have been suspected to be the main contaminants, which can affect the endocrine system of animals. Many authors have investigated these chemicals in the domestic wastewater treatment plants (WTP). However, wastewater from industries producing steroid contraceptives has not got ample attention. From the environmental point of view, the four steroids are very significant because even very low concentrations (ng/L) can cause reproductive disturbances in human, livestock and wildlife. The main purpose of the present investigation was to develop an analytical method for the determination of the four steroid estrogens present in WTP of a pharmacy factory, mainly producing contraceptive medicine in Beijing, China. Analysis was performed by solid-phase extraction (SPE) system and liquid chromatography combined with tandem mass spectrometry (LC/MS/MS). The average recoveries from effluent samples ranged from 88% to 103% and the precision of the method ranged from 9% to 4%. Based on 0.5-L wastewater samples, the limit of quantification (LOQ) was determined at 0.7 ng/L for E1, 0.8 for E2, 0.9 ng/L for E3, and 0.5 ng/L for EE2 in influent, and 1.0 ng/L for E2 and EE2, and 2.0 ng/L for E1 and E3 in effluent. In the influent samples, average concentrations of 80, 85, 73 and 155 ng/L were determined for E1, E2, E3 and EE2, respectively, showing that they were removed in this WTP to the extent of 79, 73, 85 and 67%, respectively.  相似文献   

16.
A passive sampler (the polar organic chemical integrative sampler; POCIS) was assessed for its ability to sample natural estrogens (17β-estradiol, E2; estrone, E1 and estriol, E3) and the synthetic estrogen (17α-ethynylestradiol, EE2) in the outlet of a sewage treatment works over several weeks. The performance of the POCIS was investigated and optimised in the laboratory before field deployment with high recoveries (66-99%) were achieved for all estrogens. Moreover, it was shown that POCIS does not exhibit any preferential selectivity towards any of the target compounds. The sampling rates of E1, E2 and E3 were 0.018 ± 0.009, 0.025 ± 0.014 and 0.033 ± 0.019 L d(-1), respectively. Following field deployments of 28 days in the discharge of a sewage works, POCIS was shown to enhance the sensitivity of estrogen detection, especially for E3, and provide time-weighted average (TWA) concentrations of E1, E2 and E3, ranging from undetectable to 12 ng L(-1) upstream of the outflow of a sewage treatment works, 13 to 91 ng L(-1) at the outflow and 8 to 39 ng L(-1) downstream of the outflow. This revealed that E1, E2 and E3 are not completely removed during sewage treatment, with concentrations most likely being maintained by contributions from conjugated estrogen analogues. Grab water samples showed considerable variation in the concentrations of estrogens over a longer period (6 months). The results confirm that POCIS is an effective and non-discriminatory method for the detection of low concentrations of estrogens in the aquatic environment.  相似文献   

17.
Concentration levels of six natural and anthropogenic origin steroid estrogens, namely, diethylstilbestrol (DES), estrone (E1), estradiol (E2), estriol (E3), ethinylestradiol (EE2), and estradiol-17-valerate (Ev), from different effluents in Beijing were assessed. Sampling sites include two wastewater treatment plants (WWTPs), a chemical plant, a hospital, a pharmaceutical factory, a hennery, and a fish pool. In general, concentrations of estrogens in the effluents varied from no detection (nd) to 11.1 ng/l, 0.7 to 1.2 × 103 ng/l, nd to 67.4 ng/l, nd to 4.1 × 103 ng/l, nd to 1.2 × 103 ng/l, and nd to 11.2 ng/l for DES, E1, E2, EE2, E3, and Ev, respectively. The concentration levels of steroid estrogens from different effluents decreased in the order of pharmaceutical factory and WWTP inlets > hospital > hennery > chemical factory > fish pool. This study indicated that natural estrogens E1, E2, and E3 and synthetic estrogen EE2 are the dominant steroid estrogens found in the different Beijing effluents. For source identification, an indicator (hE = E3/(E1 + E2 + E3)) was used to trace human estrogen excretion. Accordingly, hE in effluents from the hospital and WWTP inlets exceeded 0.4, while much smaller values were obtained for the other effluents. Human excretions were the major contributor of natural estrogens in municipal wastewater. Estimation results demonstrated that direct discharge was the major contributor of steroid estrogen pollution in receiving waters.  相似文献   

18.
A procedure using pre-column trimethylsilyl derivatization and gas chromatography/ mass spectrometry (GC/MS) was developed and applied in determining trace estrogens in complex matrix. Main conditions were optimized, including pH value, salinity of water sample, elution reagents, clean procedure, derivative solvent and temperature. The optimized method was used to determine steroid estrogens in surface water and effluents of wastewater treatment plant (WWTP). Low detection limits of 0.01, 0.03, 0.03, 0.07, 0.09 and 0.13 ng/l for DES, E1, E2, EE2, E3 and E(V), respectively were obtained under optimism condition. No apparent interferences appeared in chromatography in comparison with ultrapure water blank. Mean recovery ranged from 72.6% to 111.0% with relative standard deviation of 1.1-4.6% for spiked surface water, and from 66.6% to 121.1% with relative standard deviation of 1.5-4.7% for spiked effluent of WWTP. The results suggested that the optimized method provides a robust solution for the determination of trace steroid estrogens in complex matrix.  相似文献   

19.
Concentrated animal feeding operations have been recognized as one of the most important contributors of natural estrogens which show significant endocrine-disrupting properties in aquatic environments. In this study, the concentrations of 17α-estradiol (17α-E2), 17β-estradiol (17β-E2), estrone (E1), and estriol (E3) in several matrices, including soils (surface and deep), sediments (surface and deep), and groundwaters, around a typical dairy farm were surveyed using gas chromatography/mass spectrometry. Of the two farmlands, surface and subsurface sediments in waste lagoon and along effluent drainage drench, the concentrations of 17α-E2, 17β-E2, and E1 ranged from below detection limit to the highest level of 6.60 μg/kg, except that E3 was not detectable. Three estrogens of 17α-E2, 17β-E2, and E1 with the concentrations of 3.18-31.61 ng/L were observed in two groundwater samples. The results clearly demonstrated the vertical migration and horizontal transport of estrogens in the investigated area. Within 750-m distance, it was observed the attenuation of 17α-E2, 17β-E2, and E1 along the effluent route and the horizontal migration of estrogens was less than 1,350 m in this survey.  相似文献   

20.
An unprecedented investigation dealing with the removal of 17α-ethinylestradiol (EE2, a contraceptive hormone) by the cyanobacteria Microcystis novacekii (a species that is abundant and easily accessible in Brazilian lakes) from a sterile WC medium is described herein. The results indicated that whereas EE2 experienced insignificant spontaneous degradation, Microcystis novacekii was capable of removing ca. 65% of the hormone from the culture medium. Furthermore, no metabolites were detected at the concentration levels evaluated (0.10 to 0.17 mg L(-1)) as verified by the use of GC-MS, a quite sensitive analytical technique, and adequate pre-concentration procedures (SPME and liquid extraction). Elucidative experiments, including an appropriate cell lyses procedure, indicated that EE2 was likely accumulated within the cells (bioaccumulation) rather than adsorbed on the cellular membrane (biosorption). Moreover, the intra- and extracellular contents of EE2 were shown to be roughly complementary. Finally, the species was found to be highly tolerant to the hormone as its growth rates were higher in the test than in the control experiments. All these findings, therefore, point to the use of Microcystis novacekii as a potential agent to treat effluents contaminated with EE2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号